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Preface.

Let go be a real Lie-algebra. A complex structure on go is an endo-
morphism J € GL(go) such that J? = —id and [JX,JY] = [X, Y] +
JIX,JY] 4+ J[JX,Y], for all X,Y € go, [JA]. If g denotes the com-
plexification of go, g = g0 ®r C, then q = {X —iJX : X € go}
is a complex subalgebra and there is the vector space decomposition
g = q & q. Conversely, any such splitting q @ q defines a complex

structure on g setting JX = =Y, if X +:Y € q.

A complex structure on go induces a complex structure on Gy, the

Lie-group associated to go, for which left translations are holomorphic.

The study of complex structure on even dimensional real Lie-al-
gebras goes back to Morimoto, who showed that every reductive real
Lie-algebra has infinitely many complex structures, [MO]. In [SN].
D.Snow gave a complete classification of those complex structures on a
reductive Lie-algebra, which are "regular” (see Introduction to Chapter
2).

A natural generalization of these complex structures is the notion
of CR-structure which has been introduced in [GT] (see also [AHR]).

A CR-structure on a real Lie-algebra gg is the datum of a pair (p.J),

3



4 Preface

where p is a real subspace of go and J € GL(p) satisfies

1. J? = —id; "

2. [JX,JY] = [X,Y]+ JIX,JY]+ JJX,Y],VX,Y € p:

3. [JX,JY] - [X, Y] e p.VX,Y € p.
Even in the present case. the complex subspace q = {X —1JX : X €
p} is a subalgebra of g such that ¢ N = {0}, in such a way that
g =q®qgaPV, where V' is a linear space spanned by real vectors. Both
the notations, (p,J) and q, are employed to indicate a CR-structure.

Consider now a real Lie-group Gy, whose Lie-algebra Lie(Go) is o,
endowed with a CR-structure. Then, the group Gy inherits a structure
of CR-manifold for which the left translations are CR-maps, [BOG],
[WE], [AHR]. Moreover, if the CR-structure is such that p is a real
subalgebra (and consequentely q@q is a complex subalgebra of g), the
Lie-group Gy is a Levi-flat manifold: i.e. foliated by complex subman-
ifolds ( [BOG]). In such a situation the CR-structure (p,J) is said to
be Levi-flat. An interesting class of such CR-structures is given by the
ones whose leaf through the unit of G is a subgroup. A direct conse-
quence of this fact is that both right and left translations are CR-maps.
In particular, p is a real ideal of go, adx is a CR-map, for every X € go,
and the corresponding complex subalgebra q is an ideal. These CR-
structures are said to be CR-structure of Lie. They are shortly called
LCR-structures.

Via the knowledge of the LCR-structures is possible to study the
Levi-flat ones. Indeed, consider the bilinear skewsymmetric form I :

pxp—p: (X)Y)— [X,V]-[JX,JY]. The pair (p,T') is a Lie-
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algebra and the map J is invariant under I'y. Thus, any CR-structure
(p,J) on go is a biinvariant structure on (p,I'), (see Chapter 2).

The content of this thesis is a general treatment of LCR-structures
(p,J) on a real Lie-algebra go. For our study, we adopt two points
of view. According to the first one, the central role is taken by the
pair (p,J). We investigate the structure of the ideal p and all the
possible J's on it. Some limitations are found (semisimple compact Lie-
algebras do not admit any LCR-structure) and a constructive method
is developed (the LCR-structures of a solvable Lie-algebra are given on
the even-dimensional ideals by the "multiplication by :”). The main
result is a structure theorem for (p,.J), (Theorem 2.4.3):
let gy = r&qqs be a real Lie-algebra. Suppose (p,J) is a LCR-structure
on go; then (pr, Jr) and (ps,Js) are LCR-structures on v and s, respec-
tively; and (p, J) is their semidirect sum by the adjoint derivation. Vice
versa, if one considers two LCR-structures (pr, A) and (ps, D) which
verify

1) [ps, 1] C pr

2) [pr,s] C pr

3) A[X,V] = [X, AV]

4) AlU,Y] = [U, DY]
their semidirect sum by ad is a LCR-structure on go. H

For the second approach we study the ”"CR-properties” of gy de-
pending on a fixed LCR-structure (p,J). As in the classical case, we
introduce the fundamental notions of CR-nilpotence, CR-solvability.

CR-semisemplicity. The characterization of these properties for a LCR-
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algebra are expressed, in terms of g = go @r C by the following table

nilpotent : C*g = 0 || CR-nilpotent : qNC*g =0
p g

solvable : D*g =0 || CR-solvable : qNDFg =0

semisimple: B # 0 || CR-semisimple: Bq # 0

(here, as usual C* denotes the kth-central element, D* the k**-derived
and B the Killing form).

Furthermore, for a LCR-algebra a Levi-Mal’cev CR-decomposition
is proved (Theorem 3.8.6): g is the semidirect sum by ad of a CR-
solvable LCR-ideal and of a CR-semisimple sub-LCR-algebra.

As it is well known, reductive Lie-algebras have a central position
in the theory of complex and CR-structures, [MO], [SN], [GT]. In-
deed, Morimoto showed that they are always endowed with a complex
structure, whenever they are even-dimensional and Snow classified their
"regular” complex structures. In Snow’s paper the regularity is given
demanding the invariance of q under ady, where h is a suitable Cartan
subalgebra. In that situation, if A is the corresponding root set, then

the complex structure q is given by

q=9qNh® daeng”,

where II is a suitable subset of A. An analogous decomposition of
q works when q is a CR-structure of codimension 1 and g is a re-

ductive Lie-algebra of the first category as proved by Gigante and
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Tomassini, [GT]. We exhibite a class of Levi-flat CR-structures on
a reductive Lie-algebra which are not LCR.

Our investigation of CR-semisimple LCR-algebras concludes by prov-
ing that on any noncompact reductive Lie-algebra a semisimple LCR-
structure exists. Moreover. the only reductive Lie-algebra without
LCR-structure are the compact ones which have a one-dimensional cen-
tre (or which don’t have centre), Theorem 2.2.3. The other compact
ones are endowed with an abelian LCR-structure.

Finally, in the spirit of the classical root space decomposition of
semisimple Lie-algebras, a decomposition theorem is given in terms
of Cartan sub-LCR-algebras and CR-roots for CR-semisimple LCR-
algebras (Theorem 4.3.1). An interesting consequence is that a CR-
semisimple LCR-algebra g with LCR-structure ¢ admits a real form g3
whose an ideal p* is a compact real form of q. This is the CR-analogous
of the classical theorem: every complex semisimple Lie-algebra has a

compact real form, [HE].






Chapter 1

CR-structures.

1.1 Introduction to Chapter 1.

This Chapter is devoted to the definition of main concepts about CR-
structures on a Lie-algebra go. A CR-structure is a complex structure
given on a subspace p of go. So, the complex structures may be viewed
as the CR-structures on the whole go. As CR-structures, they are
Levi-flat; where the Levi-flatness will assume the meaning specified
in the following Section. The study of CR-structures has a complex
counterpart: each CR-structure may be read in the terms of a complex
subalgebra q of the complexified g = go ®r C, such that g N g = {0}.
Remark that the overlined objects are the conjugated ones, with respect
of the conjugation 7 induced by the complexification g = go @r C. We
shall often say that qis a CR-structure on go. Via this complex sub-
algebra, we define two subclasses of the set of CR-structures C'R(go).
The class LfCR(go) whose elements are characterised by the fact that
the subspace q & @ is a complex subalgebra. They are said Lewi-flat.
And the class LC R(gg) for which q is a complex ideal. Of course, the

9



10 Chapter 1

following inclusions are given

CR(go) 2 LfCR(go) 2 LCR(go).

The description of these particular classes will be the aim of Chapter
2.

A Lie-algebra go on which is given the CR-structure (p,.J) is said
to be a CR-algebra. In Section 1.3, we study and the subalgebras which
admits a CR-structure induced by (p, J); and the Lie-homomorphisms
with respect of which p is invariant and which commute with J. These
subalgebras are said sub-CR-algebras, while the Lie-homomorphisms
are the CR-homomorphisms. Notice that a sub-CR-algebra is a real
subalgebra hy of go on which (p,J) induces the CR-structure (p N
ho, Jpah,). For simplicity, we often say that a complex subalgebra h
of the complexified g is a sub-CR-algebra when h is the complexified
of a sub-CR-algebra hg. In particular, g CR-algebra means that gg
is a CR-algebra, in the sense that it is endowed with a CR-structure
(p,J). In the terms of sub-CR-algebras, the concepts of CR-nilpotence,
CR-solvability and CR-semisimplicity will be introduced in Chapter 3.

In Section 1.4, we consider the semidirect sums of two Lie-algebras.
On them, we describe the CR-structures splitted in the "natural” way:
i.e., the ones for which the underling subspace p is the sum of p;
and po, which are subspaces of the two Lie-algebras. Furthermore, we
construct some CR-structures even when the two factors do not admit

CR-structures. The particular case of reductive Lie-algebras is studied.
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On reductive Lie-algebras a family of Levi-flat CR-structure which are

not Lie-s is exhibited.
In the Appendix, we give three examples of real Lie-algebras g;.

i = 1,2,3 which show that the inclusions of the CR-classes are proper.

Precisely, we shall compute that

CR(g:) = Gr(2,3) D LFCR(g1) = 0

2

CR(g)) = Gr(2,3) D LfCR(g) ={L(X,Y): Y= (Y2)?2 4 (YO
(X1)241=(X?)?+ (X%} D LOR(gz) =0

CR(gs) = Gr(2,4) D LfCR(gs) = LCR(gs) =
= {p € Gr(2,4) : p contains a fixed vector E4}.

1.2 Basic definitions.

Let go be a real Lie algebra. In the sequel, g is its complexification
go®r C. The conjugation with respect to go is the real Lie-isomorphism
7. The conjugated element of X is also denoted as X. Moreover, we

shall write with [,] and the real and the complex Lie bracket. Just by
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definition of real Lie-isomorphism it is [X, Z] = [X, Z], which is trans-
lated, in terms of adjoint transformations, as ads = 7adz7. Obviously.
if a is a complex subalgebra. @ is a complex subalgebra, too. The ob-
ject of this thesis may be seen as the complex subalgebras which do not

intersect their conjugated ones.

Definition 1.2.1 4 CR-structure on gy s a pair (p,J) composed by
a linear subspace p of go and an endomorphism J : p — p such that
1) J* = —id
2) [ X,)Y]-[JX,JY]ep.VX, Y €p
3) [JX,JY]=[X,Y]+ J[JX, Y]+ JX,JY],VX,Y € p.

In this case, gp s said to be a CR-algebra.

Lemma 1.2.2 If(p,J) is a CR-structure on go, then the complex sub-
space q = {X — 1JX|X € p} is a subalgebra of g which does not

intersect .

Such a Lemma suggests a “complex” equivalent definition of a CR-
gg p q

structure which is more useful in view of the approach of this thesis,

Definition 1.2.3 A CR-structure q on go is a complex subalgebra q
of g, such that qNg = {0}.

Proposition 1.2.4 Given a CR-structure q on go, there exist v real
vectors X; € go such that g = q@q@ v, where v = @_ CX;. The
complezx vector space v is 7-stable. The integer r = dimcv is said the

real codimension of q. Whenever r =0, q is a complex structure.
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Proof: any basis (X;) which completes in go a basis of p = Rq
satisfies the proposition. ®
The datum of a CR-structure q is equivalent to the pair (p, J) given

in the Definition 1.2.1.

Lemma 1.2.5 Let p be the real part of q, Req, the CR-structure q
determines a linear endomorphism J : p — p such that X —1JX stays
in q, for any X € p. Moreover all the elements of q assumes the form

X —JX.

Proof: the firs part is a trivial consequence of the fact that gNqg =
{0}. Consider now Z € q; obviously ReZ stays in p, and, consequently.
ReZ —iJReZ is in q. The element Wz = Z — (ReZ —1J ReZ) stays in
g. A trivial computation says that Wz = —W 3, so Wz vanishes and
ImZ =—JReZ. &

The above Lemma depends only on the fact that q is a linear sub-
space which does not intersect q. The fact that q is a subalgebra links

J and the real Lie-product [, ].

Lemma 1.2.6 The endomorphism J verifies the conditions
1) J* = —id
2) [ X,Y]-[JX,JY]ep,VX,Y €D
3)[JX,JY) =X, Y]+ JJX, Y]+ J[X,JY,VX,Y € p.

This means that J is a integrable complex structure on p.

Thus, we have completely proved the equivalence between the real

and the complex definition. In the following, we shall denote both with
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(p,J) and with q the CR-structure. In each context the notation will
be evident.

A particular interest is taken by those CR-structures which have
more algebraic structure. In the sense that p is either a subalgebra or

an ideal.

Definition 1.2.7 A CR-structure q is said to be Levi-flat if § = q& G
15 a complex subalgebra. When q is a complex ideal, q is said a Lie-
CR-structure, or a LCR-structure. In the first case gy and g are said

Levi-flat CR-algebras. In the last, LCR-algebras.

The following examples prove that there are CR-structures which
are not Levi-flat; and Levi-flat ones which are not LCR-structures.
Some example of the existence of each kind of CR-structures are given

in the Appendix.

Example 1 Let us consider the complex three-dimensional
linear space C®. Let Xy, X be two vectors such that 7X; #
+£X5, Xo = —7X, and let (X1,7X1,X3) be a basis of C°.
If we define

[‘Xfly X?] =0

[)(1, TXl] = ‘XQ

g = (C3,[,]) is a solvable Lie-algebra. Taken qp = CX;,
we have that q; Nq, = {0} and [q1,q;] = CX,. So, q1 is a

CR-structure which is not Levi-flat.
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Example 2 Let gy be a real semisimple Lie-algebra and hy
be an its Cartan subalgebra. Then, g and h are their com-
plexifications. Since h is abelian, any nonvanishing sub-
space q of h such that NG = {0} defines a Levi-flat CR-
structure on go and a LCR-structure on hy. Moreover q

can not be an ideal of g. So it is not a LOCR-structure.

Let us conclude this Section with two results about the algebraic

"real” definitions of Levi-flat and

properties of p. Thus, we give the
Lie’s CR-structure. In the sequel we denote with u = @}_, RX; and p
the real part of v and g, respectively. We shall write g for the direct

sum q @ . As we have already remarked (Proposition 1.2.4), we have

the decompositions gg=p @ uand g=qd v.

Proposition 1.2.8 The linear subspace p is a real subalgebra if and
only if q is a compler one. This means that a CR-structure is Levi-flat

if and only if p is a real subalgebra.

Let us give the proof. In particular, we shall show that [p,p] is
included in p if and only if [q,q] is contained in g & q. If pis a

subalgebra, consider X, Y in p, and the elements

(X —iJX,Y +iJY] = [X,Y] + [JX, JY] +i([X, JY] = [JX,¥))

27 = [X,Y]+ [JX,JY]+ J([X,JY] - [JX,Y])
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W = [X, Y]+ [JX,JY] - J([X,JY] - [JX,Y]).

Trivially it is Z.W € p and [N —iJ X, Y +iJY] = Z+ W +iJ (W —Z) €
q&q.

Vice versa if there are Z.W € p such that [X — iJX,Y +iJY] =
7 +iJW, then [X,¥]+ [JX,JY] = Z € p. Since, by definition.
[X,Y] = [JX,JY] € p. it follows that [X,Y]isin p. ®

An analogous result follows about LCR-structures.

Proposition 1.2.9 4 CR-structure q is a LCR-structure if and only
if P is a real ideal and J is adx-invariant. Obviously, a LCR-structure

is Levi-flat.

Remark 1.2.10 Of course, even in this case, the more geometrical
definitions are those given in the real terms. That is, the CR-structure
(p,J) is Levi-flat, whenever p is a real subalgebra; it is a LCR-struc-
ture, whenever p is a real ideal and J is invariant under all the adjoint
derivations ady. The complex definitions have been introduced, since

they have an easier application in the direct computations.

1.3 Sub-CR-algebras.

In the family of all the real subalgebras hg, we are interested in those on

which (p, J) induces a CR-structure. Let h denote the complexification
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of hg. In the general case, the subalgebras h N q and h Nq@ are not
conjugated. Moreover, they may have not the same dimension. So we

give the following

Definition 1.3.1 The complex subalgebra h is a sub-CR-algebra of it
is T-stable and 1t admits the CR-structure h N q induced by q. When
hnNq is a Levi-flat CR-structure, h is said a Levi-flat sub-CR-algebra.
When h N q is a LCR-structure, h is said a Lie-sub-CR-algebra. Let
h be an ideal. Then we speak, respectively, of a CR-ideal, a Levi-flat
CR-ideal and a CR-ideal of Lie. Moreover, in the case that q is a LCR-
structure, h is said a sub-LCR-algebra or a LCR-ideal. When h is «a
sub-CR-algebra and hNq vanishes, h is said trivial. I[f Dhnq vanishes.
h s said CR-abelian.

Example 3 Let g be the Lie-algebra of real 2n X 2n-matric-
es, gl(2n) and p be the subspace of diagonal ones. When A
15 in p, define the CR-structure J as

(JA);, = —Appiand (JA)pyi = Ai, where ¢ < n.

Consider, now, the ideal sl(2n) whose elements have trace
vanishing. Such an ideal is not a CR-ideal. In fact, there
are elements of p N sl(2n) whose image via J has not null
trace: J(Ion —01,1) = Iyn. Ezamples of sub-CR-algebra

are provided by the space of upper triangular matrices and

by sl(n) @ sl(n).
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Proposition 1.3.2 The subalgebra h is a nontrivial sub-CR-algebra if
and only if T(hNq) =hNg# {0}. The same result is true in all the

other cases.

Of course. the complex definition 1.3.1 means that (ho N p. Ju,np)
1s a CR-structure on hg. The equivalence between these facts is given

by the

Proposition 1.3.3 The restriction of J to hoNp is an integrable com-
plex structure. Vice versa, if J is an integrable complex structure on

hoNp, hNq is a sub-CR-algebra.

Corollary 1.3.4 The intersection h N q vanishes if and only if ho N p

vanishes.

Proof: the above Proposition may be written as

honp = {0}
ho Np # {0} J does not map hy N p in itself

hng={0} & {
Let us prove that the second case can not occur. Take the subalgebra
hi =hoNp+ J(ho N p). Then hy is invariant under J and intersects
p. Thus, its complexified h’ intersects q and it is contained in h: a

contradiction. &

Hence, the sub-CR-algebras hg are characterised by the condition

Let us return to the complex situation. Since 7 is a real Lie-

isomorphism, when h is 7-stable its derived and its central series are

composed by 7-stable elements. Moreover, there is the
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Proposition 1.3.5 Let h be a sub-CR-algebra. Then either h is CR-

abelian or Dh is a sub-CR-algebra.

Proof: 7(DhNq) = DhNg=DhNg. A similar result is true even
for D*h and C*h. ®

Theorem 1.3.6 Let h be a CR-ideal of g which does not contain q.
then q/h N q is a CR-structure of g/h. Hence g/h is a CR-algebra.
said the CR-quotient.

Proof: since gnh is an ideal of q, g/qNh is a Lie-subalgebra of g/h.
On g/h consider the conjugation 7 defined as 7[X] = X +h = X +h =
[X]. Take areal element [Q] = [@] of (q/qNh)N(g/gNh). By definition.
there is H € h such that Q + H = Q: thenitis @Q —Q € hN(q& ).
Since,h = hNq@hNg®h;, hNng®hnNg = hN(g®q). So, @ € hNgq.
and hence [Q] vanishes. H

The Lie-homomorphisms which send a CR-structure in another one,

are said C'R-homomorphisms. More precisely,

Definition 1.3.7 Consider two CR-algebras g and g’. A Lie-homom-
orphism (resp. a derivation) o : g — g’ is said a CR-homomorphism
(resp. a CR-derivation) if o intertwines 7 and 7" and it maps q in q'.

The set of all the CR-homomorphisms is denoted with Hom*(g, g’).

The restriction of o to the linear subspace p defines an homomor-
phism « : p — p’ which intertwines J and J'. Vice versa, an homo-
morphism « : gg — g which maps p into p’ and intertwines J and J',

defines a CR-homomorphism.
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Example 4 Let us return to Fzample 3, consz;der the ma-
triz e;; whose entries are 6;16;1, which has 1 in position (1, )
and 0 elsewhere. Define the real subspaces By = @i<nRey;
and Ey = ®i>nReii. The CR-homomorphisms are the Lie-

homomorphisms which let both Fy and Ey invariant.

Proposition 1.3.8 Let a be an element of Hom™(g,g'), then Ima is
a sub-CR-algebra of g’ and kerav is a CR-ideal of g (when a|q is not

invertible). Moreover, aq is a CR-structure of ag.

Whenever, « is an isomorphism, then the two CR-algebras are said
to be CR-isomorphic and the corresponding CR-structures are said to

be equivalent.

1.4 Semidirect sums of CR-structures.

Take two Lie-algebras go and g, and consider the CR-structures (p, J)
on go and (p’,J') on g. If § is a Lie-homomorphism between gy and
Der(gg), a classical construction gives the semidirect sum of g} and gg
by é. Since the direct sum g{$sgo is defined on the linear space g & go,
we would like to know when the pair (pg = p' @& p,Jog=J B J)isa
CR-structure, too. In this case, it is called the semidirect sum of the

CR-structures (p,J) and (p.J’). A direct computation proves the

Proposition 1.4.1 The pair (pg, Jo) is a CR-structure on gf &s 8o if
and only if Dy(X) = 6(JX)+6(X)J" is a CR-linear map, for all X in

P-
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Corollary 1.4.2 When (p,J) is a CR-structure on go, ({0} @s p. /)

is a CR-structure, for all gi and for all 6.

Remind that when g/ is semisimple, any derivation is inner. 5o ev-
ery § : gg — Der(g)) takes the form 8, for a suitable B € Hom(go. g;).
If go and g)) are endowed with CR-structures and B is a CR-homomor-
phism, the corresponding semidirect sum supports as CR-structure the

semidirect sum of the two CR-structures.

Proposition 1.4.3 Let g} be a semisimple Lie-algebra, then the pair
(pa, Jo) is a CR-structure of any g ®s, 8o, with B € Hom™(go, gp):
where 6g(X) = adpx.

In the general case, notice that (pg, Jg) is a Levi-flat CR-structure
if and only if [(U, X),(V,Y)] + [J(U,X), J((V,Y)] is in pg, with 7.1/
in p’ and X,Y in p. This fact implies that (p’,J) and (p,J) have to
be Levi-flat CR-structures and that §(X) + 6(JX)J' € gl*(p).

By Proposition 1.4.1, Dy (JX) = §(JX)J' — 6(X) is an element of
gl*(p’). So the further condition implies that the homomorphism ¢é

maps p in gl*(p’). Let us summarise the result in the following

Proposition 1.4.4 The pair (pg,Js) is a Levi-flat CR-structure on
go Bs 8o if and only of

1. (p',J') is a Levi-flat CR-structure on gj;

2. (p,J) is a Levi-flat CR-structure of go;

3. 6(p) Cgl(p). m

Via an analogous computation, it is possible to prove the
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Proposition 1.4.5 The pair (pa, Js) is a LOCR-structure if and only
if
1. (p',J') is a LCR-structure on g;;

L

. (p,J) 15 @ LCR-structure on go;
3.6(JX)=J6(X), VX € p;
.6

~L\

) = J'§(X).VX € g

O

(X
L §(X)p' C p', VX € go:
(X

6. §(X)gh C p',VX € p.

Let us consider a different case involving semidirect sums. Suppose
that nor gy neither gf, supports a CR-structure. Even in this case, it is
possible that g &5 go is endowed with a CR-structure. In fact, consider
a subalgebra p in go and an abelian one p’ in gj. Let £ : p — p’ be
a linear isomorphism such that E[X,Y] = §(X)EY — §(Y)EX, for all
X,Y € p. Then, the pair (p= =p' @ p,JEg = (_g—l g)) is a CR-
structure. The further condition §(V)EX —§(Y)EU € p’ characterises
the Levi-flat CR-structures (p. Jg). Finally, when p’ and p are ideals
and §(GYEX — 6(Y)EH € p/, (pe, Jg) 1s a LCR-structure.

If we focus our mind on LCR-structures, Proposition 1.4.5 assures
that, if gf, is endowed with a complex structure and if §(X) is holomor-
phic, g{ ®s go supports a LCR-structure, where g is a generic real Lie-
algebra. That will be the case of noncompact semisimple Lie-algebras
where g is the sum of the real factors and g is the sum of the Cartan-

classified ones, cf. Chapter 2, Section 2. Another example is given by a

reductive Lie-algebra. In fact, in that case the algebra is the direct sum
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of its centre and of a semisimple Lie-subalgebra. So, a LCR-structure
is direct sum of an abelian LCR-structure with a semisimple one. Such
a situation is a particular case of Levi-Mal’cev decomposition. Such a
decomposition will be the object of the following Chapter.
Let us describe the particular case of a reductive Lie-algebra go. Such
an algebra is given by the direct sum of its centre and of its derived
(which is semisimple): go = ((g0) © Do

In the following, such a decomposition will take a central position.

In fact, we look only for the CR-structures splitted as (p = pa@® psd =

(Ja E
F o Js
just the LCR-structures. it is not. Infact, let p be an ideal of g5. Hence,

>) This choice is, in general, restrictive. While, if we consider

pa = p N ((go) is its radical. Take an its Levi-subalgebra ps. Since ps
is a semisimple subalgebra, it is included in the Levi-subalgebra Dgp.
Thus, p takes the desired form.

Now, take a subspace p = pa @ ps. Then, impose that J =
(if i) is an integrable complex structure on it. By definition, the
following relations have to be satisfied

By a direct computation, it is possible to show that the following

relations have to be verified:

1. J2+ EF = —idp,

2. J2+ FE = —udp,
3. JoE+EJs =0
4. JoF + FJa=10

5 [ImF,ImF]=0
DX Y] = [ X, JsY) € ps

D
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7. [Js X, JsY] = [X. V] + J[J X, Y] + Js[X, JsY]
8. ImF,ps] € KerE

9. E[Js X, JsY] = E[X.Y]

10. adpads = Jsadr.

Corollary 1.4.6 Any reductive Lie-algebra is endowed with a CR--

structure.

Proof: consider, in fact. an abelian subalgebra ps, whose dimension
is less or equal to dim((go) (such a subalgebra exists. In fact, any
linear subspace of the Cartan subalgebra h of s is abelian); and a linear
monomorphism £ : ps — ((go). Then, the pair (p = Eps & ps, JE =
( __](5),’—1 §>) is a CR-structure on gp. In particular, since p is abelian,
(p, Jg) is Levi-flat. Obviously, (p, Jg) can not be a Lie’s one, otherwise
ps would be an abelian ideal of s. Such a construction provides a "large”
family of Levi-flat CR-structures which are not Lie’s. @

The ten relations provide other interesting families of splitted CR-
structures on a reductive Lie-algebra. Suppose that (pa,Ja) and (ps, Js)
are CR-structures on ((go) and Dgo, respectively. Then

i) the direct sum (p = pa @ Ps,Ja @ Js) is a CR-structure on go;

ii) whenever F : ps — pa satisfies

JE+EJs =0
E[J.X, ;Y] = E[X,Y],

the pair (p,J = (Lga ?) defines a CR-structure on gp;
73
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i1i) whenever F': pa — DPs satisfles JoF + FJ, = 0 and adryJs =
Jsadpx, VX € pa, (p.J = (Ja 0 ) is a CR-structure.
F o Jg
In Chapter 2, we shall show that the only LCR-structures of a re-
ductive Lie-algebra take the form (pg = Pa @ Ps, Jo = Ja® Js).

In conclusion, let us observe that even the Levi-flat CR-structures

are given on splitted spaces.

Proposition 1.4.7 A real subalgebra p of a reductive Lie-algebra gp

1s reductive.

Proof: remind that a Lie-algebra is reductive if and only if its adjoint
representation is semisimple. Then, take X in p and an ady-invariant
subspace V of p. Since go is reductive, there exists an ady-invariant
subspace W of go such that go =V @ W. Let 7w be the projection on
W defined by the given decomposition. Since V is included in p, 7P
is contained in p and it coincides with pNW. Obviously, p = VaEpnit

and p N W is invariant under ady. ®

Corollary 1.4.8 Whenever p is a subalgebra, p is decomposed as p =
¢((p) ® Dp. Notice that Dp is included in Dgo while ((p) is not neces-

sary in ((go). B

In any case, a Levi-flat CR-structure satisfies the above ten equations.
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1.5 Appendix.

We study three examples of Lie-algebras of low dimension. On each of
them, all the CR-structures are studied. They are interesting because
they furnish examples of CR-structures which are not Levi-flat; and of

Levi-flat CR-structures which are not Lie’s.

Example 5 Let S® be the three-dimensional sphere. It is a compact
Lie-group, whose Lie-algebra is su(2) = {A € gl(2,C) : trA=0,A" +
A =0}. The generic element of su(2) is ( i vt w)' Hence,

—u-+v -z

abasz’sisgivenbyE1=<é Bi)’E2:<? (2)>"E3:<—01 (1)>

Furthermore, the Lie-product is defined by

[Eh Ez] - “2E3
[Eh E3] =2k,

[EQ, Eg] — —2E1

First of all, remark that the centre of su(2) vanishes. Hence, since it
is compact, it is simple. Then, su(2) has no ideals, and, hence, no
LCR-structures.

Remind, now, that a CR-structure is given on an even-dimensional
subspace p. So, we study the planes p C su(2). In the case that p is
a subalgebra, or it is abelian either it is solvable. Since the product of

two vectors is given by

(X, Y] = 2 X3V = X2V B 42 X Vo= X3V ) By + 2 XY = X 1Y 2) B,
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it vanishes if and only if they are linearly dependents. This means that
there are no abelian planes.

Consider now a solvable bidimensional subalgebra p. It is possible
to find two vectors X.Y € p such that

I.p=RX&GRY

2. [X,)Y]=Y.

The second relation implies that

(Y27 4 (V) = —(V'),

where the Yi’s are the components of Y with respect of E;. Obuviously.
the only solution is Y = 0. Hence, there are nor bidimensional sub-
algebras, neither Levi-flat CR-structures. Otherwise, any plane p =
RX @ RY admits the complex structure JX =Y, JY = =X,

In conclusion, the Lie-algebra su(2) has no bidimensional
subalgebras. Thus, the sphere 53 does not admit Levi-flat

CR-structure.

Example 6 Consider the matrices by = (S —Oz>’ E, = ( O. 1').

By = (2 é), and the space go = ®;RE;. Since,

[E17E2] = ~2E3
[ElvES] - {)E2

[E27 E3] = ()Ela
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go 15 a real Lie-algebra, whose centre vanishes. Let us write the Lie-

product of two vectors X and Y

[X,Y] = 2(X2V3— X3V ) E 4+ 2( XY 3 - X3V ) By +2( X2V = X'V 2) B,

The following system defines the eigenvectors of adx:

X2Y3 - X3Vt =AY
X1Y3 — X3y = )\Y?
X2y - XMW =077

Since one of the Yi’s does not vanishes, let us pose Y* = 1. Then, the

system becomes

Y3X2 - Y2X? = )
X® = YoX! - AY?
X? = XY 4 AY?

so Y?*=cosa, Y2 =sina. Y = (1,cos o, sin a)

Let us write the second and the third equations as

V2 = X1X2-AX3
= T(X1)2+A2
V3 = XX HAX?
= (X1)2+A2

this means that, when A is a nonvanishing eigenvalue, A is a zero of

(X'lXB + /\AX2)2 + (}(1){2 - /\){3)2 — ((X1)2 + )\2)2,

and then of

/\2 — (‘X-Z)Z + (X3)2 _ (XI)Q.

So, tr(ady) vanishes, for all X € go, and go is said unimodular. A

classical result about unimodular three-dimensional algebras says that
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the Killing form is given by B(X,Y) = —8(X'YT - X?Y?E - XPYP), of.
the Appendiz to Chapter 2. Hence, go 18 simple. In particular, it does
not admit LCR-structures and it is isomorphic to sl(2, R).

Since a CR-structure of go is supported by a plane, let us study
the planes and the bidimensional subalgebras. When p = RX & RY
is a subalgebra, p has to be solvable. In fact, X and Y commutes if
and only if they are linear dependents. Let us consider X and Y in p
such that [X,Y] =Y. Imposing this condition, we obtain the linearly

independents vectors

Y, = (1, cos a, sin &)

X0 = (a,sine + acosa,asina — cosa).

Then, Ya,a € R, Paa = RYa ® RXuo s @ solvable subalgebra. Its
endomorphism J, o, which sends Y, n Koo and Xgq in Ya, defines a
Levi-flat CR-structure on go.

Remind that peo does not depend on a. In fact, we may write Xpo as
Xoo +(b—a)Ys,.

Finally, observe that the generic CR-structures are more than the
Levi-flat ones. In fact, the vectors Yy belong to the cone I' of equation
X1 = (X?)24(X3)?, while the vectors X, are on the hyperboloid H of
equation (X1)2+1 = (X?)2+ (X?)%. A plane, which does not intersect
the above cone, supports a CR-structure but it 1s not a subalgebra.

So, go has no LCR-structure. Any its plane defines a CR-

structure. While the Levi-flat ones are generated by a suitable
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pair of vectors taken in I' and in A.

Example 7 Consider the real linear space gy of complex matrices

0 z w
0 0 z |,
0 0 0

and the matrices e;; which have 1 in the position (1,7) and 0 elsewhere.
A basis of gy is given by E1 = e1g + €3, Ey = (€1 — e23), Fs3 = eys,
Ey = ie13. A trivial computation shows that the only noncommuting

matrices are By and Ey, whose product 1s

[E]_, Eg] - —‘QE.;

Hence, Dgo = RE, and D*gy = 0. So, go is a solvable Lie-algebra.
By definition, the vector Ey stays in all the subalgebras with dimension
greater than 2. Moreover, px = RX @ REy4 is the generic bidimen-
sional ideal. So, we may conclude that the Levi-flat CR-structures of
go are LCR-structures and are given by (px,Jx), where JxX = Ejy
and JxFEy, = —X.

In conclusion, the Levi-flat CR-structures are defined by

the planes containing E,. Each of them is a LCR-structure.
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LCR-structures.

2.1 Introduction to Chapter 2.

In [SN], the author studies the left-invariant complex structures on
reductive Lie-algebras. He considers a real reductive Lie-algebra gp
endowed with an invariant complex structure. Hence, the complexifi-
cation of gg, g = go @r C, may be decomposed as g =q @1, where g
is a complex subalgebra. Snow studies the regular complex structures.
where regular means that there exists a Cartan subalgebra h of g such
that h = h and [h,q] C q.

A regular g can be written as

q=qNh& Pueng”,

where II is a suitable subset of the root set A. Finally, Snow shows
that every complex structure is regular, when it is given on a reduc-
tive Lie-algebra of the first category. Remind thaﬁ in these algebras
the involution determined by a Cartan decomposition is an inner au-

tomorphism. Such results have been translated by [GT] in terms of

31
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CR-structures on reductive Lie-algebras of the first category: the au-
thors study the case of real codimension 1. With this further hypothe-
sis, they prove that there exists a compact Cartan subalgebra hy of ggy
on which the CR-structure q induces a CR-structure. Moreover, they
find a subset AT C A which determines a decomposition similar to the
Snow’s one. Two cases are possible: either q = q N h & S4s08”, or
q=qNh® Busoaz.g® = C(H + X*), where H = H € h. In this
Chapter we explore and classify all the LCR-structures on a Lie-algebra.
With respect of [GT] we study a case in which the Lie-algebra is more
generic (in fact, it has not to be reductive of the first category), while
the CR-structure is more particular, since it is a Lie’s one. Moreover,
our approach does not use Cartan subalgebras and their corresponding
root spaces. Chapter 4 will be devoted to this point of view. In the
present Chapter, we consider the Levi-Mal’cev decomposition. Thus,
we have to study LCR-structures in the semisimple and in the solvable
cases (Sections 2.2 and 2.3): in the first one the LCR-structures are
sums (in the sense of Proposition 2.2.5) of simple ideals endowed with
a complex structure (described by Cartan in the classical classification,
[HE]); in the second one they are given on even-dimensional ideals p,
decomposed as p = uE Au, by the endomorphism J4 = (__13_1 g)
Finally, Section 2.4 concludes with Theorem 2.4.3: let go be de-
composed following Levi-Mal’cev decomposition; then (p,J) is a LCR-
structure if and only if its factors are LCR-structures whose semidirect

sum by ad is (p, J) itself. Obviously this result describes all the LCR-

structures. The only indetermination is due to the knowledge of the
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ideals of solvable Lie-algebras.
Hence, in Section 2.5 the problem of the existence of Levi-flat CR-
structure is solved; and their description is given in the terms of a new

Lie-product I' on p.

2.2 Semisimple LCR-structures.

In this Section we denote by go a real Lie-algebra and by B its Killing
form. The existence and the description of semisimple LCR-structures
depend on the compactness of the Lie-algebra. Thus, we study, sep-
arately, the compact and the noncompact case. Remind that a Lie-
algebra gy is compact if there exists a compact Lie-group whose Lie-
algebra is go. That is equivalent to giving the decomposition go =
¢(g0) ©® [go, o), where ((go) is the center of go and [go, go] is semisim-
ple and compact.

It is a classical fact that the existence of a complex structure on a
compact Lie-algebra implies the abelianity of the algebra itself. More-
over, a CR-structure (p, J) such that p is in the center of go, is trivially
a LCR-structure, so we can hopefully expect a CR analogous of the

complex result. Such an analogous result is based on the

Lemma 2.2.1 Given a LCR-structure (p,J) on go, p admits a biin-

variant metric if and only if p ts abelian.
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Proof: a metric ¢ is biinvariant, whenever

g([X.Y]. Z) = g(X,[Y; Z]),

for all X,Y.Z in go. Let p be abelian, then any metric is, certainly.
biinvariant. In order to prove the converse, we can impose that J is an
isometry with respect to g (otherwise we substitute ¢ with ¢'(X,Y") =
g(X)Y) + g(JX,JY)). With this hypothesis the following chain of

equivalences is true, for any X,Y,Z in p

(X, Y], 2) = gUJ[X,Y],JZ) = ¢([X,JY],JZ) =

9(X, [‘]Ya ]Z]) = —g(X, [Ya Z]) = —g([X, Y]a Z),

therefore g([X, Y], Z) vanishes. &

Since any compact Lie-algebra admits a biinvariant metric, we have the

Proposition 2.2.2 Let g be a compact Lie-algebra, (p,J) is a LCR-
structure on go if and only if p is abelian. Moreover, the same result

is true when the only p is compact.

The previous proposition permits us to describe the compact case with

the

Theorem 2.2.3 There are no LCR-structures on a compact semisim-
ple Lie-algebra. Furthermore, when go is a compact Lie-algebra, (p, J)

is a LOR-structure on gg if and only if p is included in the center ((go).
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Proof: the non-existence of abelian ideals in a semisimple Lie-alg-

ebra concludes the first part of the assertion. About the second one.
suppose that a compact Lie-algebra go supports a LCR-structure (p..J).
then p takes the form p; Sps where p; is an ideal of the Levi-subalgebra
Dgy and p; = p N ((go) Is the radical of p. In the case that J maps
p» in itself, then (pa.J|p,) would be a LCR-structure of [go, go]. that
is impossible. Hence. p coincides with p; and stays in ((go)-
Let us conclude proving that J maps, really, ps in itself. Consider
the complex subalgebras q; = {X —1JX : X € p;}. Obviously it Is
q = q & qz and q is another LCR-structure of g. Hence, 1t is given
the endomorphism J; : p2 — p2. Take X € py, then X —¢J.X Is in
q, and X —iJ,X is in qo. With a direct computation, we show that
(J X —JX) = (X —iJX)— (X =i/, X) = (X +i,X)— (X —}—‘iJX') €
q N g = {0}, which means that J maps p; in itself. B

Now we move to the study of LCR-structures on semisimple non-
compact Lie-algebras. The simple case is trivial. In fact, since there are
no nontrivial ideals, a LCR-structure on a simple Lie-algebra is. really.
an ad-invariant complex one, if it exists. Moreover, it is well known
that a semisimple Lie-algebra is direct sum of simple ideals. These

facts bring us to the

Proposition 2.2.4 4 LCR-structure on o semisimple Lie-algebra is
completely defined by its simple ideals endowed with a complex structure.
Moreover, the same result is true whenever go is a generic Lie-algebra

and p is a semisimple ideal.
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Proof: since q is semisimple, p = Req is semisimple, too. So.

P = p1 @ ...pk, where the p; are simple ideals of p. Define q; =

{X—iJX : X €pj}. Thenq=q®...0 q and [q;,q] C g;. So

q; is a CR-structure of g which corresponds to the pair (p;,J;). A

trivial computation shows that .J; = J|p . Hence, Jp; C p;. This fact

concludes the proof.

Hence, a LCR-structure on a semisimple Lie-algebra is given by the

complex structures on some simple factors. Each of these factors is de-

scribed in the Cartan’s classification of the complex simple Lie-algebras

g G U ¢(U") dimU
an(n>1) | SL(n+1,C) | SU(n+1) Zi n(n +2)
bu(n>2) | SO(2n+1,C) | SO(2n + 1) Z n(2n + 1)
cn(n > 3) Sp(n,C) Sp(n) Z, n(2n + 1)
dn(n > 4) SO(2n,C) SO(2n) Zy,n = odd n(2n — 1)

Zo +Zy,n = even

eg EE Es Zs 78

e E€ E; Z, 133

es EE Es Z, 248

fa Py F, 7 52

92 GS Gy A 14
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In the Table (cf. [HE]), g is a simple Lie-algebra over C; n the di-
mension of a Cartan-subalgebra; G a connected Lie-group such that
Lie(G) = gl where g® is the realification of g; U an analytical sub-
group such that Lie(U) is a compact real form of g (i.e. U is a maximal
compact subgroup); and U’ is the universal covering of U.

Let us summarise the results in the following

Proposition 2.2.5 Let go be a semisimple and noncompact Lie-algeb-
ra. Then we give the decomposition go =11 © ... OT; O P1 O ... © Px.
where:

1. both r; and p; are simple real ideals;

&S]

. on the r; there are no complex structures;

3. any p; takes one of the forms in the Table.
With such a decomposition we may choose any sum p = OF_,p;, with
the endomorphism J = Jy, @& ...J;,. The pair (p,J) is the generic

LCR-structure on go.

2.3 Solvable LCR-structures.

A real Lie-algebra g is solvable if one of its derived subalgebras van-
ishes. Since any ideal of gg is solvable, a LCR-structure on gy is an

ad-invariant complex structure on a solvable ideal.

Lemma 2.3.1 Suppose go 15 a solvable Lie-algebra and (p,J) is a

LCR-structure. Then there exists a subspace u such that p = u & Ju
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0 JII
J' 0

to Ju, respectively.

and J = (

) , where J" and J" are the restrictions of J to u and

Proof: since p is solvable there exists an its codimension one ideal
p:1 [VA]. It is easy to show that Jp; # p;. Then, there exists X; € p;
such that p = L(X;.JX7) @ p1 N Jp1. Moreover (p; N Jpy,J) is a
LCR-structure of p. Now the same fact is true for the pair (p; N Jp;.
p2), where ps is a codimension one ideal in p; N Jp;. In that way, we
find a family Xj ... X}, such that p = L(X7...Xs, JX;...JX}) and
the space u = L(X;...X}) is the desired one.

Let us show the converse: any ideal of a solvable Lie-algebra sup-
ports a LCR-structure if and only if it is even dimensional; in that case
we write p as the sum p = u @ v, where u and v have the dimension

%dimp. Chosen a linear monomorphism A : v — p such that u = Av,
0
—A-1

structures depend only on the splitting of p in equal-dimensional sub-

the complex structure J = J4 = ( I[L)i> is generic: so the LCR-
spaces. Let us proof this fact by induction.
The simplest solvable algebras are the abelian ones, i.e. the ones whose

first derived vanishes.

Lemma 2.3.2 Let gq be an abelian real Lie-algebra. Then there exists
an adx-invariant complez structure J on the ideal p if and only if p
is even-dimensional. In that case there exist a linear subspace u and a

monomorphism A :u — p such that
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I.p=Aucdu

(0 4
2 7=n=(_4a )

Moreover, fized p, all the LCR-structure (p,Ja) are equivalent, in-
dependently on the subspace u and on the morphism A. Hence, the

structure s unique.

Proof: suppose that p is endowed with an adx-invariant complex
structure J, then Lemma 2.3.1 gives us the pair (u,.J’) desired.
Vice versa, let p be an even-dimensional ideal. Then, choose u and
A, such that p = u & Au. The endomorphism Jy4 is trivially an adx-
invariant complex structure on p. If one considers the automorphism
bap = (é BSX—1>" one has an isomorphism between (p,.Js) and
(p,JB), in fact J4s045 = ¢apJp. Hence, the complex structure does
not depend on A. Finally, we show that does not depend neither on u:
let (v, () be a pair such that p =v & Cv. Then we have v = Du and
p = Du® ADu, where we have taken D Lie-isomorphism. It is easy to
show that the pairs (Du @ ADu,J4) and (u® D™'ADu, Jp-14p) are
isomorphic. B

In Section 2.2, we have shown that, given a compact Lie-algebra
go, (p,J) is a LCR-structure if and only if p is contained in the center
((go). Lemma 2.3.2 permits us to describe in a deeper way these LCR-
structures. In fact, suppose (p,J) is a LCR-structure, then p has to
take the form p = u @ Au, with J = J4. Thus, a LCR-structure on a
compact Lie-algebra is equivalent to the choice of an even-dimensional

linear subspace of the center.
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Theorem 2.3.3 A solvable Lie-algebra go admits a unique LCR-struc-
ture supported on each its even-dimensional ideal. Let (p,.J) be a LCR-
structure, then there exist two vector spaces u and v and an isomor-
phism A between u and v such that p = u® Au and J = J4. Moreover,

fized p all the LCR-structures (p, Ja) are equivalent.

Proof: let k be the minimum integer such that D*gg = 0, then make
the proof by induction over k. The base of the induction is given by
the abelian case. Now, let gy be a solvable but not abelian real Lie-
algebra. In any case, go' = go/Dgo is abelian. Furthermore J maps Dp
on itself, since Jadyx = adyx.J. So the induced morphism J’ defines a
LCR-complex structure. If we apply the previous Lemma, we have that

p=w & J|ww and J = Jp Choose a subspace w in the class

lwe -
0 Jt 0
w', then we obtain gg=w & J*Tw@Dgypand J = | JT 0 0
0 0 4

where J* is the restriction to w and J; the one to Dgy. Finally, we
apply the inductive hypothesis on the pair (Dgg, ;). B

In conclusion, a solvable Lie-algebra gy admits one LCR-structure
on each even-dimensional ideal (in the hypothesis that it exists) given
by an isomorphism J4. Hence LCR-structures are essentially given by
the choice of even-dimensional ideals. Remark that it is possible to

have different LCR-structures of the same dimension.

Example 8 Let gy be the real three-dimensional linear spa-

ce spanned by (E4, Es, E3) whose Lie-product is given by

(B, Ey] = [Ey, E3] = 0



LCR-structures 41

[Er, B3] = Es.
Consider now the solvable ideals p; = L(Ey, E3) and p; =
L(Ey, F3). Since ps is not abelian, the LCR-structures de-

fined on them are inequivalent.

Example 9 Let go(n) be the set of upper triangular n x n
real matrices, and ng be the ideal whose elements have 0 on
the diagonal. A trivial computation shows that ng is nilpo-
tent and it coincides with Dgo(n). Hence, go(n) is solvable.
Consider the matriz E;; which has 1 in (2, 7)-position and 0

elsewhere. If ng is odd-dimensional, then
2k—1
n; = ng® EBJ'=1 RE'ij’iJ
is an even-dimensional ideal, as well as it is
— 2k RE- .
Np = g &>, @j:l 1515
when ng is even-dimensional. In both the cases, go(n) ad-

mits at least 2"~' LCR-structures, not necessary inequiva-

lent.

2.4 The Levi-Mal’cev decomposition.

Let p be an ideal of go. Then its radical p, is given by p N r, where r

is the radical of gg. Furthermore, if ps is an its Levi-subalgebra, there
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exists a Levi-subalgebra s of gy containing ps. Thus, there are the two
Levi-Mal'cev decompositions: p = pr G,4 Ps and go = r $ay 5. Since
pr is the radical of p it contains both [ps,r] and [py, s].

Suppose, now, that (p.J) is a LCR-structure and that .J is denoted
by the matrix (é D
pr, X in s and Y in ps. Then, the condition adyixJ = Jadyyx is

equivalent to the following 1) A[U, V] = [U, AV] + [U,CV]

). Moreover, choose the elements I/ in r, V in

2) A[X.V] = [X, AV]

3) A[U,Y] = [U, BY] + [U, DY]
1) B[X,Y] = [X, BY]

5) C[U,V] =0

6) C[U,Y] =0

) CIX,V] = [X,CV]

8) D[X,Y] = [X, DY].

A direct computation shows that J is the direct sum of A and D. In

fact, there is the
Proposition 2.4.1 The matrices B and C vanish.

Proof: in consequence of T), ImC is an ideal of s. Moreover, we
have that [CV,CVi] = C[CV,Vi] = 0, so ImC is abelian. Thus, it is
an abelian ideal of a semisimple Lie-algebra and it has to vanish.

The fourth condition says that ker B is an ideal of ps. Hence, it is
semisimple: moreover, ps/ ker B is semisimple, too. Otherwise, every
subspace t of r verifies D"t = 0, for a suitable n. So ImB does. As

linear spaces, we have that ps/ker B and ImB are isomorphic, via the
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isomorphism j Xt = BX, where X* = X 4 ker B € ps/ ker B. Let us
compute the product [ X+, 7Y F].

First of all, take X, Y in ps, and compute

[BX,BY] = A[BX,Y]—[BX,DY]= AB[X,Y] - B[X,DY] =

= —BD[X.Y]- B[X,DY] = —2BD[X,Y].

Furthermore, D sends ker B in ker B, in fact B intertwines A and
—D. Hence, jX*.jYT] = =2j(D[X,Y])". So, we can conclude that
D"(ps/ ker B) vanishes, since ps/ker B is semisimple. Thus, ps coin-

cides with ker B. B

Remark 2.4.2 The vanishing of C does not depend on the fact that
the first factor is solvable. So for a semidirect sum go Bs g,, with the

second factor gl semisimple, a splitted LCR-structure takes the form
A B
!
(P& P, ( 0 D ) )-

Proposition 2.4.1 permits us to simplify the list of relations charac-
terising a LCR-structure:

1) (pr, A) is a LCR-structure on r

o

) (
2) (ps, D) is a LCR-structure on s

3) [ps,r] C pr

4) [pr,s] C pr,

5) A[X, V] = [X,AV],VX €5,V € py;
)

6) A[U,Y] = [U,DY],YU € 1,Y € ps.
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Theorem 2.4.3 Let go be a real Lie-algebra. Then, there exists an its
Levi-subalgebra s such that (pr, Jr) and (ps, Js) are LCR-structures on
r and s, respectively; and (p..J) s their semidirect sum by the adjoint
derwation. Vice versa, if one considers two LCR-structures (py.A)
and (ps, D) which verify

1) [ps,r] C pr

2) [pr,s] C pr

3) A[X, V] =[X, AV]

4) AU Y] = [U, DY]

their semidirect sum by ad is a LCR-structure on go. M

2.5 Levi-flat CR-structures.

Morimoto showed that there always exist complex structures Jyo on
any even dimensional real reductive Lie-algebra, [MO]. Using this
result, we prove the existence of Levi-flat CR-structures on every Lie-
algebras (except su(2)). Next, we study their structure. In order to do
this, we introduce a new Lie-product I' on p with respect of which the
CR-structure (p,.J) is a Lie's one. Then, we apply Theorem 2.4.3. This
allows to give a general structure theorem for Levi-flat CR-structures

(Theorem 2.5.10).

Theorem 2.5.1 The only Lie-algebra which does not support any Levi-

flat CR-structure 1s su(2).
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Proof: consider a Levi-Mal’cev decomposition gg = r @aq 5. When
s is even-dimensional, Morimoto assures that there exists a complex

structure Jyro on it. The pair (s, Jyo) is a Levi-flat CR-structure.

Furthermore, we have seen that, if dimr > 2, there exists a solvable

Levi-flat CR-structure (p,.J4) on r.

So, we have to study the case dims odd and dimr < 1. When
dimr = 1, go is reductive. In fact, take an element of the center
Ry + So. Thus, Sy vanishes and [Ro, S] = 0, for any S in s. Hence.
if ¢(go) # {0}, then [r,s] = 0, r = ((go) and s = Dgo. Vice versa.
suppose that the center vanishes. Then, since r is an abelian ideal.
[r,s] is not null and it coincides with r. So, go = Dgo. In both cases.
go = ((go) ® Dgo. So. go is an even-dimensional reductive Lie-algebra.

and there is a Jyro complex structure on the whole gp.

The last case is given by the odd-dimensional semisimple Lie-algeb-

ras go, and it is divided as follows:

1. If rankgy > 2, any even-dimensional linear subspace p of a Cartan

subalgebra supports a Levi-flat CR-structure (p, J4) on go.

2. When rankgo = 1, taken a Cartan subalgebra h = RH,, the only
roots are the vanishing one and 4a. So, the algebra is of the form
go = RH, ® RX, @ RX_,, hence it is three-dimensional. Finally.
the only three-dimensional semisimple real Lie-algebras are su(2) and
sl(s,R). In the Appendix of Chapter 1, we have seen that su(2) has
no Levi-flat CR-structure; while sl(2,R) is endowed with the Levi-flat

CR-structures (Pa,o; Ja,o) B
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Let (p,J) be a CR-structure on go. Define the bilinear skewsym-
metricform I':pxp —p: (X, Y) = [ X, Y] - [JX,JY].

Lemma 2.5.2 The bilinear form T is a Lie-product on p. Moreover,
the structure J is a compler one tnvariant with respect to the I'-adjoint

derivations of p.

Consider a CR-structure (p..J) such that q is a solvable complex sub-
algebra. Then p satisfies the condition D'p = {0}, for a suitable [ € N.
By definition, an element of Dfp is sum of elements of D*p, hence, Dhp
vanishes; and therefore (p.I") is a real I'-solvable Lie-algebra. Applying

the results of Section 3 to the I'-LCR-structure (p, J), we have the

Proposition 2.5.3 Let gy be a real Lie-algebra, and (p,J) be a CR-
structure, such that q is solvable. Then there exist a linear subspace u
of p and a linear monomorphism E :u — p such that

I.p=ué& Eu

2. J=Jg.
Moreover, any even-dimensional linear subspace p may be written as

p =u @ Eu and admits the complex structure Jg.

Let us complexify the Lie-algebra (p,I'). Its complexified linear space

is q itself, on which we mayv consider the complex product T.
Proposition 2.5.4 The pair (q,T) is a Lie-algebra.

In fact, (X —4JX,Y —JY) =T'(X,Y) -T'(JX,JY) - {T(X,JY) +
[(JX,Y)} =2{I'(X,Y) —4JT(X,Y)} is an element of q. ®
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We also have that ['(X — iJX,Y —iJY) = 2{[X,Y] - [JX,JY] -
WJ(X, Y] = [JX,JY]D} =2[X —JX,Y —1JY], and, as a trivial con-
sequence, Br = 4B, where B is the Killing form of the Lie-algebra

(q,[,]). This computation suggests the

Proposition 2.5.5 The complex subalgebra q 1s I'-semisimple if and

only if it is semisimple.

In the last part of this Section we consider a Levi-flat CR-structure
(p,J). Then in view of a classical result, the subalgebra p is semisimple

if and only if q is it. Hence there is the following

Proposition 2.5.6 Let (p,J) be a Levi-flat CR-structure on go. Then

p is D-semisimple if and only if p is semisimple.

Such correspondence is not true for simple and I'-simple Levi-flat
CR-structures: a semisimple p may be a [-simple Lie-algebra. In that
case, p is one of the complex (I'-)simple algebras of the Cartan’s clas-
sification [HE]. Otherwise, it is direct sum (with respect of [] and with

respect of ') of I'-simple I'-ideals s;.

Proposition 2.5.7 Let (p,J) be a semisimple Levi-flat CR-structure
on go. If p is not I'-simple, there are (not necessary simple) ideals s;
of p such that

I.p=s10O...0Sk,

2. each s; supports the I x-invariant complex structure Js,. ®
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Now, take a Levi-flat CR-structure (p,J). Since (p,T) is a Lie-
algebra, consider its Levi-Mal’cev decomposition p = rr ®r sr, where

rr is the I-radical and s is a I'-Levi-subalgebra.

Proposition 2.5.8 The I'-radical rr and any T'-Levi-subalgebra sp are

invariant under J.
A trivial consequence is the

Corollary 2.5.9 The pairs (rr,J|x.) and (sr, J|s;) are Levi-flat CR-
structures on (p,T). The structure (p,J) is their semidirect sum by

I
The global result can be stated in the following

Theorem 2.5.10 Let (p.J) be a Levi-flat CR-structure. Consider the
I'-Levi-Mal’cev decomposition p = rr ©r sr. Then the T'-radical rr
takes the form rr = u® Eu and the restriction J|yy s equivalent to Jg.
Furthermore, the T'-Levi-algebra sr is direct sum of J-invariant ideals
s; of s which support I x -invariant complez structures J; = Jls;. So the

Levi-flat CR-structure is given by the pair (p,J) whose elements are

P= (U\:EEU) DBadS1® ... © 8k

.]:L7E@-]1@=--@Jk-
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2.6 Appendix.

In this Appendix we describe LCR-structures on low dimensional Lie-
algebras go. First of all, remind that there exist just two different

bidimensional Lie-algebras: the abelian one and the Lie-algebra hg of
a

0 —a
with the complex structure given by the "multiplication by .7

the matrices ( > which is solvable. Both of them are endowed

So, the case dimgy = 2 is solved. Now, let dimgo be greater than
3. Let us start with dimge = 3. Such Lie-algebras are completely
classified in [MI]. The classification makes use of the map ¢ : g —
R: X ~ tr(ady). Since tr([ady,ady]) = 0, ¢ is a Lie-homomorphism.
The kernel u = ker is an ideal called unimodular kernel; go is said

unimodular if go = u. An important result is given by the

Lemma 2.6.1 Let go be an unimodular 3-dimensional Lie-algebra en-
dowed with a scalar product. Then there exists an orthonormal base
(E1, Ea, E3) such that

1. [Ey, Bs) = M By, [Es, Er) = A By and [Ey, Es) = AsEs;

2. B(X,Y) = =2(A A XY + AMAsX2Y? 4+ A0 X%Y7).

The 3-dimensional unimodular Lie-algebras are classified by the follow-
ing relations

L.AM=A=X=0

2.0 F#0, A=A3=0

3. MA2 #0, A3 =0

4. AtA Az # 0.
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Casel: go is abelian and isomorphic to R®. Each plane supports a
LCR-structure: in fact. let p = L(X,Y) be a fixed plane; a LCR-
structure is given by J(X.Y") = (=Y, X).

Case2: the Lie-product is described by [Es, B3] = M Ey, [Es, El=0
and [Ey, Ey] = 0. The planes p; = L(Ey, E3), ps = L(E1, E;) and
px = L(Ey,X) are abelian ideals endowed with the LCR-structures
Jo(Ey, E3) = (—E3, Ey) and J3(Ey, Ey) = (—E,, By). They are all the
Levi-flat CR-structures of the algebra.

Case3: let us consider the bidimensional subalgebras: L(Ey, Es) is the
only abelian one and it is even an ideal. Then, we have to look for the
solvable ones: so, we study the equation [X,Y] =Y.

Since [X, Y] = A (X?Y3 — X3Y?) By + A (X3Y! — X'Y?) By, it must be
Y3 =0 and Y'Y2X? £ 0. Two subcases are possible: or A1Ag > 0, and
there are no solvable subalgebras; either A;A; < 0. Hence a solvable
subalgebra p = L(X,Y) is generated by ¥ = (1, —22.0) and X =

A1

(X1, X2, \/:—\%) Since, [X, F1] = \/———%Eg, no L(X,Y) is an ideal.
In fact, it would be (0, ——%’11,0) = aY + BX that implies « = 8 = 0.
which is a contradiction.

Cased: B is nonsingular. i.e. go is semisimple. But 3-dimensional
semisimple Lie-algebras are simple. Hence go has no nontrivial ideals.
So there are no LCR-structures on such a go. A deeper analysis shows
that if all the \; are positive, gp is isomorphic to su(2); while if one
of them is negative it is isomorphic to sl(2,R). In both the cases go

is a real form (compact or not) of sl(2,C). A detailed study of these

Lie-algebras has been done in the Appendix of Chapter 1.



LCR-structures ' 51

The last case is when gg is not unimodular. Which means that
is a nonvanishing real linear form. So its kernel u is an abelian 2-
dimensional ideal. And at least one LCR-structure exists.

Summarising all the case, one obtains that a 3-dimensional real Lie-
algebra go either is a (simple) real form of sl(2, C) either is endowed
with (at least) one LCR-structure given on a 2-dimensional abelian
1deal.

Remark that, if one considers the 4-dimensional case, the only non-
solvable Lie-algebra endowed with a LCR-structure 1s R & sg, where sq
is a real form of sl(2,C). The study of LCR-structures on 2- and 3-
dimensional Lie-algebras, make easy the classification on 5-dimensional
ones. Such a study is quite interesting since it makes use of Levi-
Mal’cev decomposition. In the sequel, let dim go = 5. Suppose that go
is decomposed as go = ro Pqd So- Let us consider the dimension of ry.
When dimre = 0, go is semisimple. Since there are no semisimple
algebras of dimension 1 and 2, go may not have nonvanishing ideals.
So go is simple and it has no LCR-structures.

Let dimrg = 1. Then ry is the real line and it is abelian; hence so 1s
simple. So go has no LCR-structures.

In the case dimrg = 2, ry either is abelian or it is the solvable algebra

) a b
of matrices <

0 —a
and coincides either with su(2) or with sl(2,R). Even in this case, so

). The corresponding Levi-subalgebra sg is simple

does not admit LCR-structures. The only one is given by the solvable
ideal rg endowed with an endomorphism of the form Jg.

The cases dimrg = 3,4 can not occur, since sg should be 2- or I-
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dimensional.

The last case is dimry = 5. Then gy is solvable and it admits LCR-

structures on all its 2- and {-dimensional ideals.
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LCR-algebras.

3.1 Introduction to Chapter 3.

In this Chapter (as well in the next one), we focus our attention on
LCR-algebras. Precisely, we are interested to describe in what extent
the properties of an algebra g = go @r C depend upon the datum of
a LCR-structure q. This is slightly different from what we did in the
first two chapters, where a LOCR-structure was studied for itself.

Thus, we develop a structure theory of LCR-algebras. First of all.
we introduce some useful classes of such Lie-algebras: the CR-nilpotent.
the CR-solvable and the CR-semisimple ones.

To study the CR-nilpotent LCR-algebras, we need to define the
LCR-representations, i.e. those representations which preserve the
LCR-structure. Via these representations, we are able to show that
the CR-nilpotent LCR-algebras are characterised by the vanishing of
g N C*g, for a suitable k. Thus, they are CR-solvable.

Then, in the theory of CR-solvable LCR-algebras the CR-solvable

CR-radical r* is studied; of course r* plays the role of the classical

93
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solvable radical. For instance, the property r* = 0 determines CR-
semisimple LCR-algebras. Moreover, its behaviour is described by the
Cartan’s criteria for CR-solvability and CR-semisimplicity. In Sec-
tion 3.7, we give a description of CR-maximal CR-semisimple LCR-
algebras g, where CR-maximal means that any nontrivial LCR-ideal of
g is contained in q. A CR-maximal CR-semisimple LCR-algebra is a re-
ductive Lie-algebra and it is a fundamental factor of a CR-semisimple
LCR-algebra (Theorem 3.7.4). Thus, we give a structure result for
CR-semisimple LCR-algebras. In particular, Theorem 3.7.10 assures
that a Lie-algebra g admits a semisimple LCR-structure § if and only
if g is a noncompact reductive Lie-algebra. Finally, we obtain a re-
sult concerning any LCR-algebra and we prove the existence of Levi
sub-LCR-algebras s*, , obtaining the Levi-Mal’cev CR-decomposition
g = r" @ug ™. Thus, a generic LCR-algebra may be studied as the

semidirect sum of a CR-solvable ideal and a CR-semisimple subalge-

bra.

3.2 CR-nilpotent LCR-algebras.

Let go be a real Lie-algebra on which a LCR-structure is given via
an ideal q of the complexified g = go @r C. The datum of the real
Lie-algebra go corresponds to a fixed conjugation 7. Consider now a
complex linear space V decomposed as V = W @& W @ Vi, where the

overlined objects are conjugated with respect of its conjugation 7v.
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Definition 3.2.1 A representation p: g — gl(V) is said to be a LCR-
representation if
i) p(z) commutes with Ty, for all x € go;
i) the family p(q) maps V into W;
1) the subspace W is p(g)—invariant.
A LCR-representation p is said to be trivial, whenever p(q) vanishes.
A LCR-representation intertwines the conjugation of g and the one
of gl(V): p(Z) = p(z), Yz € g. Moreover the family p(g) sends V into

W This implies that p sends q in another LCR-structure,

Proposition 3.2.2 The subalgebra p(q) is a LCR-structure on p(go).

Furthermore, it is a Levi-flat CR-structure on gl(Vp).

Proof: since p is a representation, p(q) is an ideal of p(g). Moreover
p(q) = p(q). In fact, if we take ¢ in p(q) N p(q), its range is included
in W NW. Then ¢ vanishes. B

A simple computation shows that ad is a LCR-representation.

Definition 3.2.3 A LCR-representation p is said to be C'R-nilpotent
if and only if, for any x € g, exists k such that p(z)*V N W = {0}. 4
LCR-algebra g is said CR-nilpotent, when ad is a CR-nilpotent LCR-

representation.
The second part of the definition has the following converse.

Proposition 3.2.4 Let p be a CR-nilpotent LCR-representation, then

p(g) is CR-nilpotent.
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Proof: take = in g. Since p(z) sends W into W, the map p(z)|w
is nilpotent, as well as p(Q) is nilpotent, for all @ in q. So, adyz)),, :

gl(W) — gl(W) is a nilpotent map: i.e. ad’;(x) = 0.

lw
If z and y are elements of g such that adﬁ(m)p(y) € p(q), for a suitable

k, then adﬁ(r)p(y) maps V into W. Thus (Ld};mp(y) vanishes. &

Lemma 3.2.5 Let g be a CR-nilpotent LCR-algebra. Then there exists

a CR-ideal of codimension one.

Proof: consider the set S = {h C g : [h,h] C h,0 < dimh <
dimg,7h = h,hnq# {0}}. S is not empty. In fact, if z € p = Req,
h(z) = SA(z, Jz) verifies the following relations

a)h(z) Cq@qCag;

b) h(z)Ng 2 C(z —iJz);

¢) h(z) = 7h(z).

Take an element h in S of maximal dimension. Then h is CR-nilpotent.
Consider the linear space {" = g/h, with the subspace T' = q/h N q.
then the following decomposition is given U = T @ T @ U;. Let 7 :
g — U denote the canonical projection. Finally, remark that when
z is an element of h, ad, induces an endomorphism «a(z) of U. The
map o : h — gl(U) is a CR-nilpotent LCR-representation of h: take
z,y € g, then a(z)*(y + h) = ad®y + h. Such an element is in 7T if
and only if ad®y is in q. Since h is CR-nilpotent, this fact implies
that a(x)*I/ N T = {0} . The corresponding restricted representation
& : h — gl(T) is nilpotent. Take now an element ¢t € T/{0} such

that c(h)t = 0. The condition is equivalent to the choice of an element
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@ € q/gqnh such that adgh C h. Thus @ is in n(h)/h, and dimn(h) >
dimh. Since n(h) is in S, it coincides with g and h is a CR-ideal. For
any y € n(h)/h, h, =h & C(y +7) is an element of S different of h.

So, h, coincides with g and h has codimension one. B

Theorem 3.2.6 Given a CR-nilpotent LCR-representation p, the set
Vi={veV:p(glvNW ={0}} is not vanishing.

Proof: consider the representation g : g — gl(W) : z — p(a)|w.
Since p is CR-nilpotent, 5 is nilpotent. Hence the set {v € V : p(g)v =

0} is nonvanishing. Finally, it is contained in V'. B

Proposition 3.2.7 Let T be a 7-stable p-invariant linear subspace of
V. Define V.=V/T and p: g — gl(V) : 2 = p(), p(z)[v] = [p(x)r].

Then p is a CR-nilpotent LCR-representation.

Proof: First of all, remark that 70 = 7(v +T) = v+ T = rv.

Moreover, if z € go,

Take, now, Q € q. then p(@Q)5 = p(Q)v € W and p(Q)V C T
Obviously, p?aj)ﬁ; C iV, Vz € g. Finally, suppose that p(z)fv € 1.
then p(z)*v € W, which is false. B

Let p be a LCR-representation CR-nilpotent of g on V. Consider a
subspace V; C V such that

1.7 Vi=W

2. p(g)Vi C W
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Such a V; exists. In fact, Vi such that p(g)w = 0, W; = Clw+w) = W)
and p(g)W; = 0.
Then define the subspaces V; = {v: p(g)v C Vi_1}

—
ra

Corollary 3.2.8 The representation p; : g — gl(V) : & — p(z)|v,,, s

a CR-nilpotent LCR-representation.

Proposition 3.2.9 Take the subspaces V; defined as above. Then there
exists an integer s, such that V4 C Vo C ... CV, =V. For each 1 < s,

Vi =V, and V; is invariant under p(g).

Proof: let us prove by induction that V; C Vi41. Since p(g)Vy C V4,
then Vi C V5. Now. by induction hypothesis, let V; C Vi.; and take
v € Viz1, s0 p(g)v € V; C Viyq, and hence v € V5. This fact implies
that p(g)Vi € Vi. Then, we prove that 7V; = V;. In fact 71] = Vj;
suppose TV; = V; and take v in Viy1, then p(z)tv = 7p(T)v € 7V, = V.
By Corollary 3.2.8. there exists an element ¢ € V;11/V; such that

Lo#£0

2. p(g)on W = {0},
where W = W N Vie1 /W NV, Hence, there exists v € V' which does not
stay in V; and such that p(g)v N W N Vi C V. Then p(g)vN W CV;
and v € Vigq. So dimV; < dim Viy; and there exists an integer s such
that V, = V. &

If g is CR-nilpotent. then ad is a CR-nilpotent LCR-representation.
Let us consider a 7-stable ideal g; C g which does not intersect q and

take the corresponding family of subspaces g; = {z : [z,8] C g1}
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Then, each g; is a 7-stable ideal of g; there exists an integer s such
that g, = g; and g; is strictly contained in g;+;. Moreover, for a
suitable 7, g; is a LCR-ideal.

At this point, we have all the elements to give a characterisation of

CR-nilpotent LCR-algebras in the terms of its central series.

Theorem 3.2.10 The LCR-algebra g ts CR-nilpotent if and only if

there exists p such that CPg N q = {0}.

Proof: suppose C*g N'q = {0}. Since ad? has range in CPg, the
intersection ad?g N q vanishes, for all z in g. Vice versa, consider the

above family g;. It results that C'g C g,_;, 50 C*"lgNq={0}. &

Corollary 3.2.11 Let g be a n-dimensional CR-nilpotent LCR-algeb-
ra, and q have codimension k. Then there exist some ideals h; of g
such that

1) dimh; =n —1;

9ho=g2dh .. Dhy, ={0}

5) (g hi] € higy;

4) h; s a LCR-ideal, if 1 < k.

Proof: let gg € gy C ... C g; = g be the elements of the above
family. Take a pair of linear subspaces a and b such that g; Cb C a C
gi+1- Then, we have [g,a] C [g,g8:+1] C g C b C a, and we complete

the family g, with elements whose codimensions have step 1. &
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3.3 CR-solvable LCR-algebras.

A sub-LCR-algebra h is said C'R-solvable if there exists an integer [ > 0
such that D'hNq = {0} and D'"'hNq # {0}. Thus the LCR-structure
h N q on hy is solvable. Moreover, if h is a solvable sub-LCR-algebra.
it is trivially CR-solvable. Thanks to Theorem 3.2.10 a CR-nilpotent
LCR-algebra is CR-solvable.

Proposition 3.3.1 The LCR-algebra g s CR-solvable if and only if
there exists a family of LCR-ideals go = g,81,--.,8s such that

1. g;Nq={0}

2. 8iy1 S g

3. g:/gi+1 1s CR-abelian.

Proof: let g be CR-solvable, then the family D'g is as above. Vice
versa, let {g;}ier be a family of LCR-ideals which satisfy the three
conditions. Since g;/g;y1 is CR-abelian, then D’gNqC g;Nq; and g

is CR-solvable. ®

Theorem 3.3.2 Let g be a CR-solvable LCR-algebra and r be its rad-
ical. Then q is a LCR-structure of v and it is given the decomposition
g = qdriPBs, where q is the sum qOF, r = qPry is the decomposition

induced by the LCR-structure q on r and s is a Levi-subalgebra.

Proof: since g is CR-solvable, q is a solvable ideal. Hence,q C r. ®
Moreover, we know, by Theorem 2.4.3, that a LCR-structure q on the
radical r is a LCR-structure on the whole g if and only if there exists

a Levi-subalgebra s, under which it is invariant. Thus, we give the
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Theorem 3.3.3 The LCR-structures with respect of which g is a CR-
solvable LCR-algebra are all the LCR-structures on the solvable radical

r which are invariant under a suitable Levi-subalgebra s.

Any subalgebra k of a CR-solvable LCR-algebra g satisfies the con-
dition D'’k N q = {0}. Of course, if it is a sub-LCR-algebra it is CR-
solvable. A CR-quotient is CR-solvable, too.

Proposition 3.3.4 Let h be a CR-solvable LCR-ideal and g/h be C'R-

solvable, then g is CR-solvable.

Proof: since g/h is CR-solvable, q/h N q is solvable; similarly, hNnq
is solvable. Thus, q is solvable. Let us give the proof by induction on
dimg. When g is bidimensional, it is solvable and it is CR-solvable
with respect of its unique LCR-structure. Now, suppose that the fact
is true for all the LCR-algebras whose dimension is less than dimg.
Since g/h is CR-solvable, g/h is different from D(g/h). Thus g # Dg.
Take a 7-stable subspace of g k containing Dg such that codimk/h is
1. Then k + h is a LCR-ideal of codimension 1 of g. Moreover, h is
a CR-solvable LCR-ideal of k + h such that k 4+ h/h is a CR-solvable
LCR-ideal of g/h. Thus, k + h is CR-solvable. Furthermore k + h
contains Dg. Then, either Dg N q vanishes or Dg is a LCR-ideal. In

any case g is CR-solvable. ®

Proposition 3.3.5 Let g be a CR-solvable LCR-algebra, then there
ezists a LCR-ideal h such that dim(g/h) =1
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Proof: if g is CR-abelian, any 7-stable subspace containing q is a
LCR-ideal. Otherwise, any r-stable subspace containing Dg is it. Such

a subspace exists, since. if a D Dg, then a+a 2> Dg. B

Proposition 3.3.6 Let g be a CR-solvable LCR-algebra and p an its
LCR-representation on the linear space V (dimcV = N). Then, there
erist some A; € g* and a basis {vy... vy} for V such that, for any

TEg,

0 P /\N’(.'E)
In particular, Vo € g, p(z)v1 = A1(z)vy.

The proof, by induction on dim g, is based on the following Lemmas
3.3.7Tand 3.3.8. The basis of the induction is given by the case dimg =

2, for which g is solvable and the result is classical, [VA].

Lemma 3.3.7 In the above hypothesis, there exists a nonvanishing vec-

tor of V which is an eigenvector for any p(z), z € g.

Proof: let h be a LCR-ideal of g with dim(g/h) = 1, and z4 be
in g such that zo is not in h. By induction hypothesis, consider a
nonvanishing vector w € V and a A € h* such that p(y)w = A(y)w, for
any y € h. Define w, = p(zo)°w. Let p be the greatest integer such
that w,wy,...,w, are linearly independents. Define W_;, = {0} and
W, = L(w,...w,). Hence, w, € W, whenever ¢ > p. Moreover, p(z;)

maps W, in itself and W, into W,,, where r < p. &
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Lemma 3.3.8 Let r < p and y € h, then p(y)w, = A(y)w,, modW,_1.
Moreover, p(y)W, C W,,Vy € h.

Proof: when r = 0. we have p(y)w = A(y)w. Let the thesis be true
for r < p, then p(y)wr41 = p(y)p(zo)wr = p(xo)p(y)w: + p([y, xo])1es.
Then p([y, zoJw, is in W, and p(y)w, = My)w, 4+ w;. Thus, p(y)w,4
coincides with A(y)w,+; modulo an element of W,. &

Let us return to the proof of Theorem 3.3.6: we have shown that
p(y) and p(zo) let W, invariant, so tr(p([y, zo])|w,) is null. Otherwise,

()w,) = (1+p)A(z). Hence, A(ly,zo]) = 0; s0. by

induction, p(y)w, = A(y)w,, with y in h. Take, now, an eigenvector

Vz € h, tr(p

vy of p(zo) in Wy p(zo)vy = cv1. Define A\; as A on h and as ¢ in .
Obviously, Ay stays in g™ and p(z)v; = Aj(z)vy, Vo € g. Considering
the LCR-representation p; induced by p, p1 : g — gl(V/Cuvy). and

using the induction on dim V, we obtain the desired basis {v;}. ®

Proposition 3.3.9 Let g be a CR-solvable LCR-algebra, then there
exists a family of sub-LCR-algebras g1 = g,82,...,8ns1 = {0}, (n =
dimg), such that g;+1 is a I-codimensional LCR-ideal of g;.

Proof: let us construct the LCR-ideal g;. In the case that Dg is a
LCR-ideal, a 7-stable hyperplane V cdntaining D'g may be chosen as
g2 When Dg is not a LCR-ideal, g is CR-abelian. Since dim Dg <
n — 1 (otherwise, it would be dimg = 1), then as g, take a 7-stable
hyperplane which contains D'g and which intersects q. Finally, by

induction, we construct the family required. &
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Proposition 3.3.10 Let g be a CR-solvable LCR-algebra and p an
its LCR-representation on a finite-dimensional space V.. Then the set

a={z € g:p(z)is CR-nilpotent} is a LCR-ideal containing Dg.

Proof: consider the sets b = {z € g : p(z) is nilpotent} and c(q) =
{z € q: p(z)is nilpotent}.
Then a O b D ¢(q); and anq = ¢(q) 2 Dq # {0}. Obviously,
c(q)=c(§ andang=ang
Since p(z)v; = Aj(z)vjmod Sic; Cu;, the element z stays in b if and
only if A\;(z) = 0, for any i. Hence, Dg C b C a, and a is an ideal

containing Dg. So it is a LCR-ideal. B

Theorem 3.3.11 The CR-algebra g is CR-solvable if and only if Dg
is CR-nilpotent.

Proof: suppose Dg is CR-nilpotent, then Dg and g/Dg are CR-
solvable. Hence g itself is CR-solvable. Vice versa, let g be CR-solvable,
then Dg is contained in the LCR-ideal a, defined in the above Theorem.
Thus, Dg is CR-nilpotent. B

3.4 The CR-radical.

Take two CR-solvable LCR-ideals h and k. Then, the sum h +k is a
LCR-ideal and h+ k/h ~ k/h Nk is CR-solvable. Hence h + k is CR-
solvable. So, there exists a unique CR-solvable LCR-ideal r* = r*(g)
which contains all the CR-solvable LCR-ideals; r™ is said the CR-radical

of g.
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Proposition 3.4.1 The LCR-algebra g is CR-solvable if and only if g

coincides with r~.

Definition 3.4.2 4 LCR-algebra g is said CR-semisimple if v van-

ishes.

Since q is an ideal, we know that its radical r(q) is given by the
intersection of r(g) with q, itself. TFurthermore, when q is a LCR-

structure, we have the

Lemma 3.4.3 The radical v(q) is given by the intersection of q with
the CR-radical r™(g).

Proof: the intersection r*(g) N q is a solvable ideal of g, so r*(g) N
q € r(q) = r(g) N q. When r(q) vanishes, r*(g) N q vanishes, too.
While, when r(q) is not zero, r(g) is a CR-solvable LCR-ideal. Hence.
r(g) C r*(g) and the intersections with q coincide. H

The same result is true even for q.

Lemma 3.4.4 The intersection r* N q coincides with r(q). Moreover,

r(q) is a LCR-ideal.

Proof: since r* N q is solvable, r* N q is solvable, sor* N g C r(q) =
r(g) N q. Furthermore, r(§) N q does not vanish and r(q) is a solvable
LCR-ideal. Finally, r(q) C r*. By the above computation, r(q) is a
T-stable ideal of g. Otherwise, r(§)Nq = r*Nq which does not vanish.
by definition. So, r(q) is a LCR-ideal. ®
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Lemma 3.4.5 When the CR-radical r*is included in the radicalr, they

coincide.

Theorem 3.4.6 The LCR-algebra g is CR-semisimple if and only if g

is semistmple.

Proof: the radical of q vanishes if and only if the CR-radical of g
does. B
When the ideal q is semisimple, the direct sum q = q©®¢ is semisimple,
too. The vice versa is also true. Hence, the LCR-algebra g is CR-
semisimple if and only if q is semisimple.

Now, we have all the elements to give a result analogous of Theo-
rem 3.3.2. The LCR-structure of a CR-semisimple LCR-algebra may
be seen as the LCR-structure of a semisimple subalgebra, as well as, in
that case, the LCR-structure of a CR-solvable LCR-algebra was seen

as a LCR-structure of the solvable radical.

Proposition 3.4.7 Let g be a CR-semisimple LCR-algebra. Then,
there exists a Levi-subalgebra s which admits q as LCR-structure and it
is given the decomposition g = r & gD q*s, where g3 is the orthogonal

of q with respect to the Killing form of s.

Vice versa, by Theorem 2.4.3, a LCR-structure q of a Levi subalge-

bra s is a LCR-structure on the whole g if [q, r] vanishes.

Theorem 3.4.8 The semisimple LCR-structures q are the LCR-struc-
tures of a Levt subalgebra s which are Levi-flat CR-structures of the

centralizer of v, c(r).
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Proposition 3.4.9 The CR-radical v is invariant under all the CR--

derivations; the CR-quotient g/r* is CR-semisimple.

Proof: a CR-derivation D is an element of Der(g; q), hence ezp(tD)
is a CR-automorphism and exp(tD)r* =r*, so Dr* Cr”.
The projection 7 : g — g/r* is a CR-epimorphism. Take a CR-solvable
LCR-ideal h C g/r. Then 7 !(h) is a CR-solvable LCR-ideal. So
r* C 7~}h) C r*, and h = {0}, which means that the CR-radical

r'(g/r*(g)) vanishes. B
Proposition 3.4.10 Let h be a LCR-ideal. Then r*(h) =r"(g) Nh.

Proof: let us consider [r*(h), g]. We may easily compute that it is a
CR-solvable LCR-ideal of h. So [r*(h), g] is included in r*(h) and r*(h)
is a CR-solvable LCR-ideal of g. Hence r*(h) is contained in r*(g) and
r*(h) Cr*(g)Nh Cr*(h). &

Theorem 3.4.11 Let g be a CR-semisimple LCR-algebra, then any
LCR-ideal 1s CR-semisimple. Vice versa, if there exists a LCR-ideal
h containing q which, as LCR-algebra, is CR-semisimple, then g is

CR-semisimple.

Proof: when r*(g) vanishes, by the above Proposition, r*(h) van-
ishes, too. Consider, now, h such that ¢ € h C g and h be CR-
semisimple. Then q is semisimple and g is CR-semisimple. &

Let 5™ be the set of the LCR-ideals n such that p(z) is CR-nilpotent.
Vz € n. In particular, when n is in 5%, n is an ideal such that p(x)|y

is nilpotent.
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Take the representation pw : g — gl(W) : @ — p(z)|w with the
associated set Sy of the ideals n such that pw(z) is nilpotent. Then
S* C Sy and, by the existence of the nilradical, there exists an elemente
ny € Sy which contains all the elements of Sy. In particular ny-
contains all the elements of S*. Thus nw N q does not vanish and
ny = M. So, ny is a LCR-ideal and it is in S*. Such a result is

exposed in the

Proposition 3.4.12 Given a LCR-algebra g and an its finite-dimen-
sional LCR-representation p, there exvists a unique element n* € S5°

which contains all the elements of S*.

Definition 3.4.13 A CR-nilideal m of g is a LCR-ideal such that ad,
is CR-nilpotent, Vo € m. There ezists a unique CR-nilideal n™ which
contains all the CR-nilideal. It is said the CR-nilradical of g.

It is not difficult to show that n* is contained in r*; finally any

CR-isomorphism of r* let n~ invariant.

Proposition 3.4.14 Let h be a LCR-ideal, then n*(h) is a LCR-ideal

and coincides with n*(g) N h.

The CR-nilradical of g and the one of r*(g) coincide. Moreover, we

have the

Proposition 3.4.15 The following equivalences are true:

L. n*(g) = n"(r*(g));
2. n*(g) = {z € r": ad, is CR-nilpotent}.
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Proof: since n*(g) C r*(g), then n*(g) C n*(r*(g)); while n*(r*(g))
is included in n*(g) by definition. The second part of the proof is a

consequence of Theorem 3.3.10. &

Corollary 3.4.16 [fg is a CR-solvable LCR-algebra, the CR-nilradic-
al n*(g) is the set of all the elements = such that ad, is CR-nilpotent.

Moreover, Dg is contained in n™(g).

Proposition 3.4.17 Any CR-derivation of g maps r* into n*. Hence

r~,g] Cn*.

Proof: let A € Der*(g) and g’ = g & C. Define [(z,c¢),(2',c')]s =
([, 2]+ Az—cAz’,0). Then (¢',[,]4) is a Lie-algebra; theideal g {0}
is a LCR-structure of g’; and v’ = r* @ C is a CR-solvable LCR-ideal.
Moreover, i’ is a LCR-ideal of r’. Hence Dr’ C n’ and Dr'N(r*&{0}) C
n'N(r@{0}) = n* & {0}. Of course, r* @ {0} is an ideal of g’ and so.
Vz € r*, (Az,0) = [(2,0),(0,1)] € Dr' N (r* @ {0}) C n* & {0}; which

means that Ar Cn~. B

3.5 Cartan’s criteria.

Given a LCR-structure q, an associated representation on ¢ is intro-
duced, In fact, since q is an ideal, ad, maps q in q, forall z in g. Thus.
we define the representation ¢ : g — gl(q) as ¥ (z) = ad;|g.

Hence, there exists a unique maximal ideal ny such that ¥ (z) is nilpo-

tent, Vo € ny, [VA]. Thanks to Theorem 3.4.12, n* coincides with

n¢.
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Now, let us consider the symmetric bilinear form

BY(z.y) = tr(¢(x),¥(y)),

with the associated ideal

gl'b = {I cg: Bw(f&y) = OVVy € g}

By a classical result, [g*+.g] € ny. Then, we have the
Lemma 3.5.1 The CR-nilradical ny is included in g*v.

Proof: take © in ny. Then () is nilpotent, so tr(y¥(z)D) = 0,
where D is a derivation of . In particular, tr(v¥(z)¥(y)) = 0, for all

yeg. B

Lemma 3.5.2 When Q is an element of q, the numbers B¥(z,Q) and

B(z,Q) coincide, for all z in g.

Proof: first of all, remark that the map ad, o adg sends g into q.

Thus, we compute

B(z,Q) = tr(ad;oadg) =tr(ad; oadg)lg =
= tr(ad;oadglg) = tr(adg|q o ady) =
= tr(adplg 0 ady)|g = tr(adglg o adslq) =

= Bw(l Q). =

Now, we have all the elements to proof the Cartan’s criteria.
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Theorem 3.5.3 The LCR-algebra g is CR-solvable if and only if the

expression B¥(z, [y, z]) vanishes identically.

Proof: suppose that g is CR-solvable. Then Dg is a subset of
the CR-nilradical n*, which is contained in g**. So B¥(z,[y,z]) =
0,Vz,y,z € g.

Vice versa consider the case in which B¥(z, [y, z]) vanishes identi-
cally. Then, Dg is contained in g*¢ and CDg = [Dg,Dg] C [g+.,g] C
ny = n*. So CDg is a CR-nil-ideal. Thus, Dg is a CR-nil-ideal, and g
is CR-solvable. ®

Theorem 3.5.4 The LCR-algebra g is CR-semuisimple if and only if

BY is nonsingular.

Proof: in an equivalent way, we shall show that r* # {0} if and only if
g # {0}.
| Let r* do not vanish. When [r*, g] # {0}, then g*v does not vanish.
In fact, it contains n™ which contains [r*,g]; otherwise [r*,g] = {0}
means that r* is contained in the centre of g, ((g). In particular. r*
coincides with ((g) and then g** 2 n* = r* # {0}.

Vice versa, let r™ be vanishing. So, r(q) is null and Der(q) = adq.

A trivial consequence is that

Vo €g,3Q. € q:v(z) = h(Qz).

Suppose, that z is in gt¥. Hence, @), is in g*, too; which means

that g** is a LCR-ideal. If g** is not zero, it is a LCR-ideal on which
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BY vanishes identically. So Dg'* is CR-nilpotent and g** is CR-
solvable. Thus, r™ D gv. that is a contradiction. So, if r* vanishes,

g vanishes. ®

Proposition 3.5.5 If the only LCR-ideals of g are the trivial ones,

(i.e., g, =q&q, and {0}). g is CR-semisimple.

Proof: first of all consider the case in which §** is not a LCR-ideal,
then VQ € q, there are Q1. Qs € q such that B(Q, Q1+ Q) # 0, while
B(Q,Q,) =0, s0 B(Q,Q1) # 0 and q*4 = {0}. This means that q is
semisimple and hence, g is CR-semisimple.

In the case that g** is a LCR-ideal, q'* is or q either g. In both
the cases, B|q vanishes identically and g is solvable. This implies that
q # Dg and any 7-stable linear subspace a such that ¢ 2 a D Dq is a

LCR-ideal. So ¢ should be one-dimensional, which false. &

Definition 3.5.6 A LCR-algebra g is said to be CR-mazimal if all its
nontrivial LCR-ideals are contained in q. A LCR-algebra g is said to

be CR-simple if all its nontrivial LCR-ideals contain q.

Definition 3.5.7 4 chain of LCR-ideals is a family H = {hy C h; C

... C h,} such that the first element hy is not contained in g.

All the elements of a chain are endowed of a CR-structure of positive
codimension. When the algebra is CR-semisimple, the element h; is

CR-maximal.
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3.6 CR-semisimple LCR-algebras.

In this Section we discuss the main properties of CR-semisimple LCR-
algebras. Since the form BY is nonsingular, for any linear subspace
a, dimg = dima + dimat». This fact is useful in the study of the

LCR-ideals of such LCR-algebras.

Lemma 3.6.1 Let g be a CR-semisimple LCR-algebra. If we consider
a LCR-ideal h, we have the decompositions g = h ® h*» = (hNq) =
(hn q)tv =. Moreover, since B¥([z,y],z) = B¥(z,[y,2]), htv is an

ideal, whenever h is an ideal.

Lemma 3.6.2 4 LCR-ideal h contains q if and only if h** does not

intersect q.

Proof: when q is included into h, then h'* is contained in g*~
which does not intersect q.
Vice versa, let h*» N q vanish. Consider K = @ + Q¥ in h*»: where
Qisin q and Q¥ is in q**. For any H € h, [K, H] = [Q, H] + [Q". H]
vanishes, in fact h and h'* are disjoint ideals. Since [@, H] € q and
[Q¥, H] € g**, then [Q, H] = [Q¥, H] = 0. In particular @ is in h**.

Thus, @ vanishes. Hence, h** C q** and q Ch. ®

Corollary 3.6.3 Ifh is a LCR-ideal, then or h contains q either ht»
18 a LCR-ideal.

Theorem 3.6.4 Let g be a CR-semisimple LCR-algebra and h be «
LCR-ideal. Then
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1. h*¥ is a 7-stable ideal;

o

either h contains q or hv is a LCR-ideal;

. [hyhte] = {0};

o

4. h is CR-semisimple;

v

. g/h is CR-semisimple, whenever h does not contain q.

Proof: for the first assert, take z in h**. Then B¥(Z,h) = B¥(z,h)
vanishes, and T € htv.
The second and the third points are given by the previous lemmas.
Let g be CR-semisimple, then q is semisimple and h N q is a nonzero
semisimple ideal of h, which means that h is CR-semisimple. Further-
more, q/q N h is a semisimple LCR-structure of g/h. Thus g/h is

CR-semisimple. &

Corollary 3.6.5 Let g be a CR-semisimple LCR-algebra and h be an
its LCR-ideal. If k is a LCR-ideal (resp. an ideal) of h, then k is a
LCR-ideal (resp. an ideal) of g.

Corollary 3.6.6 If g is a CR-semisimple LCR-algebra, then g coin-
cides with Dg © ((g).

Proof: take z in (Dg)** and y,z in g. Then B*¢([z,y],z) =
Btv(z,[y,z]) = 0. Thus, (Dg)** is contained in the centre ((g).
Furthermore, take [z,y] in Dg and z in ((g), hence B+ ([z,y],z) =
B*¢(z,[y,z]) = 0, and Dg is contained in ¢((g)**. Since Dg is a LCR-

ideal, the thesis follows. &
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Theorem 3.6.7 Let g be a LCR-algebra and h a LCR-ideal such that
g/h is CR-semisimple, then the CR-radical is contained in h. Let - :

g — g1 be a CR-epimorphism, then or™ =rj.

Proof: consider the canonical projection = : g — g/h and let r~
be not a subset of h. Then =(r*) would be a nonzero CR-solvable
LCR-ideal, which is impossible.

Since g/r™ is CR-semisimple, g1 /¢(r*) is CR-semisimple. So, by the
previous remark, ¢(r*) 2 rj. By the other hand, ¢(r”) is a CR-solvable
LCR-ideal, so p(r*) Cr}. B

Theorem 3.6.8 If g is a CR-semisimple LCR-algebra, then the Lie-

algebra of its CR-derivations is given by Der™(g) = ad(g) © Der(¢(g).

Proof: since [D.adg] = adpg, ad(q) is an ideal of Der™(g). Obvi-

ously, ad(q)Nad(q) vanishes. So, ad(q) is a LCR-structure of Der™(g).
Moreover, ad(g) is CR-semisimple. In fact ad : g — ad(g) is a C'R-

epimorphism. Furthermore, Der™(g) is CR-semisimple, too. Hence.

Der™(g) coincides with ad(g) ® (ad(g))**. Take, now, D in (ad(g))*~.

then adpx = 0, which means that Dg C (g. Let us define the subspaces

D, ={D: Dg C Dg}
Dy ={D:Dg C((g)}
Since, ad(g) is in Dy and (ad(g))*¥ in Dy, then Der*(g) = Dy + Ds.

Moreover D; N D, vanishes, so D; = adg and Dy = (adg)**. Take now

D in Dy, then Dg C ker D. Thus, we identify D, with Der(((g)). ®
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3.7 CR-maximal LCR-algebras.

In this Section, we study the CR-mazimal LCR-algebras. We decom-
pose a CR-semisimple LCR-algebra in factors, which are LCR-ideals,
and consequently they are CR-semisimple (Theorem 3.7.4). Thus, we
conclude with the classification of CR-maximal CR-semisimple LCR-

algebras (Theorem 3.7.10).

Theorem 3.7.1 Let g be a CR-mazimal LCR-algebra. Then there are
the three following cases:

1. g admits a complex structure containing q;

2. q has codimension 1;

3. g is CR-semisimple.

Proof: remind that r* is a LCR-ideal, then if r* vanishes, g is CR-
semisimple. When r* coincides with g, it must be g # Dg. When Dg
is not a LCR-ideal, let us consider the linear subspace q + Dg. If it
is all g, then hg = CQ + CQ + Dg is a LCR-ideal, then hy = g and
q N Dg # 0, which is a contradiction. Otherwise, when g + Dg is a
proper subspace, it is a LCR-ideal and it must be Dg C q. So every
7-stable linear subspace containing § is a LCR-ideal. In this case, the
codimension of q or vanishes either is 1. Finally, if Dg is a LCR-ideal,
q+ Dg is it and we argue as above.

Let r* be included in §. Moreover, r* is the radical of q and of g
itself. Let us consider the two following case:
1) r* # q; then there exists a Levi-subalgebra s of g such that q =

r* @& qNs is the Levi-Mal'cev decomposition of q. Let us define k as
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(gNs)* and h = r & (k + k) is a LCR-ideal, which is impossible. So
q is a complex structure.
2) r* = g; consider a Levi-subalgebra s of g. When h is an ideal of s.
r* 3 hahisaLCR-ideal and hence g = r* @ h @ h. Finally, h & q is
a complex structure éontaining q B

If g is a CR-semisimple LCR-algebra, q is semisimple and we may
write q as q; & ... qr = Yex Ui, Where the g; are simple ideals of q.
So we may consider two distinct families of LCR-ideals: the first ones
contain q, the second ones do not.

Remark that, if g is not CR-maximal, there exist some LCR-ideals
containing q. Let h be a LCR-ideal such that h N q = Y ;c;q;, then
h @ Ycn_sQ is a LCR-ideal including §. Via such LCR-ideals, we

give the following decomposition for g.

Proposition 3.7.2 Let g be a CR-semisimple LCR-algebra, then we
may write g = +;erh;. where the h; are CR-mazimal LCR-ideals such

that hi n h]' = (~31

Proof: take a LCR-ideal h of g such that hNq = . Then h contains
d. By Lemma 3.6.2, h'* does not intersect q. Otherwise, h' = g&h+»
is a LCR-ideal which verifies the following

g=h+h

hNnh'=4q.
If one considers a LCR-ideal k of h, one gets the decomposition g =

k + k' + h’ with the conditions kNnk'=knNh'=k'nh’ = q.
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Remark that k' is the sum of q and of the orthogonal of k with respect
of BY in h.
In this way, we construct some chains {H;};es such that

g = +ieshy

h;Nh; =q,
where any h; is the last element of its chain. Hence, it is CR-maximal.

Such a construction does not depend on the beginning LCR-ideal
h. In fact, if h; were a CR-maximal LCR-ideal, with [ ¢ J, we have
that h; N h; is a LCR-ideal of g and there are two possible cases:

1. h;Nh; = h;

2.h;Nh =q =

When q is simple, any LCR-ideal contains ¢ and we have the above
decomposition.

Now, suppose q semisimple and write q = q1 @ ... ® qz. Let us
consider the sets S; = {his a LCR-ideal : hN q = q;}. Each S; is

notempty, since it contains (P;x;q; ).
Lemma 3.7.3 Ifh is in S;, h'v N q = @ixq;

Proof: h** N q is an ideal of q, so it is sum of some q;. It is not q,
otherwise h would not be a LCR-ideal. Moreover, q = hNq@ht»Nq.

So, we have the further decomposition, given by the

Theorem 3.7.4 If q is semisimple and it is decomposed as q = q1
.. O, g is decomposed as g =g O ... O gk, where
1. each g; is a CR-mazimal LCR-ideal;
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2. g.Nq=q
3.g.Ng = {0}

Proof: let g4 € 57 be CR-semisimple, then gf‘w admits the LCR-

. . .1 - ~
structure gy @ ... ® gx. By inductive hypothesis, g1 =g @ ... = g.

where each g; is a LCR-1deal of g-f"” (and hence of g) such that g;Nq
q; and g; Ng; = {0}. Since g =g1 ® gi*, the assert is proved. ®
Theorem 3.7.4 gives a decomposition of g, CR-semisimple, in CR-
maximal LCR-ideals. Since each of them is CR-semisimple, in the last
part of this Section, we shall describe the CR-maximal LCR-algebras
which are CR-semisimple. Now on, g will be a CR-mazimal CR-

semisimple LCR-algebra.
Lemma 3.7.5 The ideal §*¢ does not admit 7-stable ideals.

Proof: let h = h be an ideal of g**. Then, it is an ideal of g. so
h** includes g and it is a LCR-ideal. Since g is CR-maximal, either

ht# is g or is . Hence, h is or zero either q*v. B
Lemma 3.7.6 Let h be a nontrivial ideal of §*¥. Then g** =h = h.

Proof: the subspaces hN h and h + h are 7-stable ideals of g*+.
When hnh is equal to §**, h coincides with §**; when h+h vanishes,
h vanishes, too; in the case that h N'h vanishes and h +h = §*+. h is

a complex structure of g*v. B

Proposition 3.7.7 Let g be a CR-mazimal CR-semisimple LCR-alg-
ebra. Then q is either simple or a complex structure. In the last case,

g is semisimple.
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Proof: the ideal q may be written as q = q; @ ... ® qg, where the
q; are simple. In fact. it is semisimple. Then, h; = q; ® g** is a LCR-
ideal. If h; is included in , ¥ vanishes and g = § is semisimple.

Otherwise, hy coincides with g. Thus q = q; is simple. &

Corollary 3.7.8 The only LCR-ideals of a CR-mazimal CR-semisim-
ple LCR-algebra g are {0}. q and g.

Lemma 3.7.9 A nonvanishing ideal h of q** does not admit ideals.

Hence, h is or one-dimensional either simple.

Proof: an ideal k of h is an ideal of g**. Thus, ¥ coincides with
k ®k and k is equal to h. =
Now, we classify the CR-maximal CR-semisimple LCR-algebra via the
"unique” ideal h of qtv, which is either simple or abelian.

~-Llr/)

type q g codvmq g s

[ {0} qo

semisimple

®
ol
o

I CH®CH |q=2g0oCHO®CH 2 reductive

CH=CH q@qGe CH 1 reductive

111 hoh qogqeohoh 2dimh | semisimple

h=h qOqoh dimh | semisimple
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Let us return to the CR-semisimple (not CR-maximal) case. Con-
sider the decomposition in CR-maximal LCR-ideals given by Theo-
rem 3.7.4: g = (Oiesgi, with gi N q = q;. Then, divide S in three
subsets S, Sy, S3, such that 7 is in S} if and only if g is of type I, and

I - o~ II II7

so on. Define g’ = Ties,gi, g'' = ..., g = .... In particular. the

above Table shows that

g’ = Qies, &
g’ = Gies, (& © CH; + CH,)

g’ = Ojes, (& O hy).

We derive the following structure theorem for CR-semisimple LCR-

algebras.

Theorem 3.7.10 Let g be a CR-semisimple LCR-algebra. Then

i) q ts contained in the semisimple LCR-ideal Dg;

ii) g is reductive.
Moreover, a reductive Lie-algebra admits a LCR-structure with respect
of which is CR-semisimple if and only if it is noncompact. Namely.
the class of all the reductive Lie-algebras is the disjoint union of two
classes: the class of compact Lie-algebras and the one of CR-semisimple

LCR-algebras.

Proof: since qtv = Oies,(CH; © C-H;) ® @iegsﬁi, we compute

DI = Oies,hs
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C(@™) = Oues,(CH; @ CH;).

Otherwise, g = Dg © ((g). thus Dg = q @ Dg*» is a semisimple
LCR-ideal and ((g) coincides with ¢(g*¥).

Finally, when g is compact Dg is compact and semisimple, thus Dg does
not admit LCR-structures and g is not CR-semisimple. Vice versa, if
g is a reductive noncompact Lie-algebra, Dg admits LCR-structures.

which are semisimple. ®

REDUCTIVE LIE-ALGEBRAS

4 N

COMPACT LIE-ALGEBRAS

CR-SEMISIMPLE LCR-ALGEBRAS

o /

3.8 The CR-Levi decomposition.

This last Section is devoted to the decomposition of a LCR-algebra g as
the semidirect sum by ad of its CR-radical and a CR-semisimple LCR-

algebra. In fact, there is a result analogous to Levi-Mal’cev Theorem
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(Theorem 3.8.6). In order to prove this Theorem, we have to introduce
the CR-cohomology of a CR-semisimple LCR-algebra.
Let g denote a CR-semisimple LCR-algebra. The element w? of the
enveloppong algebra of g associated to the CR-polynomial V(X)) =
B¥(X, X) is said to be the Casimir CR-element of g.

Proposition 3.8.1 The Casimir CR-element w¥ belongs to the centre
of the universal enveloping algebra of g. Let {X;} be a basis for q.
whose dual basis is { X'}, then w¥ = ¥; X; X".

Proposition 3.8.2 Let p be a representation of g and k be (ker p)*+.
Then w? belongs to the centre of the universal enveloping algebra of g.
Let {X;} and { X'} be two basis of kNq such that B(X;, X7) = §!. then

wf =3, X;X¢ In particular, trp(w”) = dimk N q.

Remark that, when p is nontrivial, k is a nonvanishing LCR-ideal.

More generally, if p(q) # {0}, then kN q # {0}.

Corollary 3.8.3 Let p be a representation of the CR-semisimple LCR-

algebra g and let

Vo={veV:plg =0}

Vi = taegp(z)[V].
Then V is the direct sum of V,, and of V,.

We now define the CR-cohomology groups: given a LCR-representation

p:g— gl(V), let Via(g,p) be the set of the skew symmetric j-linear
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maps F' of g x...xg (j factors) in V such that F(gxgx...xg) C W
and F'(c(q) x g x ... x g) = 0. If we introduce the differential operator
d, obviously it maps Vig(g,p) in ViL'(g,p). So, we define the CR-
cohomology groups HéR(g,p) as the quotient ker d/Imd and we have
the

Theorem 3.8.4 [fg is CR-semisimple and p is an its nontrivial LCR-

representation, then Hip(g. p) = Hég(g, p) = {0}.

The proof is analogous to the one in the semisimple case. In fact
it 1s based on the condition g = Dg © ((g) and on the decomposition
C7 = Ci @ C! (where Ci(g,p) ={0 € Vi(g,p):d0 =0}). m

Let, now, g be a generic LCR-algebra and r* be its CR-radical. A
Levi sub-LCR-algebra s is a sub-LCR-algebra such that g = r* @,y 5™

This decomposition is said to be a CR-Levi-Mal’cev decomposition.

Lemma 3.8.5 4 Levi sub-LCR-algebra is CR-semisimple. Moreover,

its centre ((s*) vanishes

Proof: let = be the generic element of g decomposed as z = B, + S,,
and 7 be the natural projection on s*. Since, there exists an element
Rg € qNr, consider an element of q of the form Q = Rg + So.
Hence, Sq € s* N q which is not empty. So 7 is a CR-epimorphism,
and r*(s*) = 7 (r*) = {0}.

Finally, suppose that s* = ((s*) ® Ds*. Thus r* © {(s*) is a LCR-ideal
which is CR-solvable, since D(r* @ ((s*)) C r*. Hence, r* = r* @ ((s)

and ((s*) vanishes. =



LCR-algebras

[v7s]
it

Theorem 3.8.6 Any LCR-algebra g admits a Levi sub-LCR-algebra
s*. If s* is a Levi sub-LCR-algebra of g, then it is also a Levi sub-
LCR-algebra of Dg and the CR-Levi-Mal’cev decomposition of Dg is

Dg = [r*,g] Tad S~

Proof: we make the proof by induction on dimr*. If dimr*=0.g
is a Levi sub-LCR-algebra. Now, let dimr* > 1. There are two cases:

1. Dr* is a LCR-ideal. Hence, g’ = g/Dr* is a LCR-algebra and
m(r*) is its CR-radical (where 7 is the natural projection). By the
induction hypothesis, g’ admits a Levi sub-LCR-algebra s’. Let us
denote 771(s’) as sg. Then g = r*+sp and qNDr™ = qNr*Nsp. Finally
Dr* N q is a CR-solvable LCR-ideal of sq and so/Dr* is isomorphic to
s’. Hence, Dr* is the CR-radical of sg. Since dimDr* < dimr™. sg
admits a Levi sub-LCR-algebra s such that sp = Dr* @.¢s. Moreover
g = 1" B,4s and s is a Levi sub-LCR-algebra of g.

2. Dr* is not a LCR-ideal. Let us consider the subalgebra g and the
Lie-epimorphism 7q. Hence, 7q(r(q)) = r(q), so r(q) = r(q) & r(q).
Moreover, Dr(q) = Dr(q) @ Dr(q) € Dr*Nq@ Dr* N q and r(q) is
abelian. |

The Lie-algebra g; = g/r(q) admits the LCR-structure q; = q/r(q)
which is semisimple. Consider a linear map g : g1 — g such that
Top =1d, pqy € q and pur; = Tu. Let us define p : g1 — gl(r(q)) :
Xy — adyxy)lrq)- Since r(q) is abelian p is well defined and it is a

LCR-representation.

Now, define 0(z,y) = [uz, py] — p([z,y]). We may easily compute
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that f(z,y) belongs to r(q); df vanishes; (z,y) = 0, when z is in
((g1); and 6(z,Q) belongs to r(q). These facts mean that 4 is in
HZg(g,p) which vanishes. So, there exists a linear map v : g; — r(q)
which maps q; into q and such that § = dv. The map A = pu — v
is a CR-homomorphism such that 7 o A = id. Hence s* = \g; is a
sub-LCR-algebra such that g = r* ®,4 s™.

Now, let p = [r", g]. Then Dg = p +[s7,s*]. Since s* is a Levi sub-
LCR-algebra it is Dg = p+ s~ and pNs* Cr~ Ns = {0}. Moreover,
since Dg is a LCR-ideal, r*(Dg) = DgNr*. &

Finally, the CR-version of Harish-Chandra Theorem may be proved

as well as the classical one.

Theorem 3.8.7 Let g be a LCR-algebra and v™ be its CR-radical. If
s7 and s; are Levi sub-LCR-algebras, there exists a CR-automorphism

@ such that ps} = sj.

Corollary 3.8.8 Ifs* is a Levi sub-LCR-algebra and s is a CR-semi-
simple sub-LCR-algebra. Then there exists a CR-automorphism ¢ such

that s C s*.
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3.9 Appendix.

1. For reasons of simplicity, we developed the structure theory of LCR-
algebras in the complex terms. As we have remarked in Chapter 1. the
more geometrical approach would be the real one. Thus, we translate
the most interesting results about (g, q), involving (go, P, J)-

Remind that a real subalgebra hg of gg is a sub-LCR-algebra if it sat-

isfies the condition

J(hoNp) CThoNp# {0}

Define h as the complexified hg ®@g C. Then, hy N p vanishes if and
only if h N q does. Finally, a CR-homomorphism ¢ between two LCR-
algebras (go, p,.J) and (g, p’,J’) is a Lie-homomorphism which maps

p into p’ and which intertwines J and J'.

2. In this terms, we give the

Proposition. Let hy be a sub-LCR-algebra. Then the following
statements are true
1. hg is CR-nilpotent if and only if C*hy N p vanishes;

2. hy is CR-solvable if and only if D¥hy N p vanishes.

Let us study, in particular, a CR-solvable LCR-algebra. About its

LCR-structure, there is the

Theorem. Let (p,J) be a LCR-structure such that go is a CR-
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solvable LCR-algebra. Then p is contained in the radical v(gp). Vice
versa, an evendimensional solvable ideal p supports a unique complex
structure J such that (p..J) is a LCR-structure and go ts a CR-solvable
LCR-algebra. ®

A characterisation of CR-solvable LCR-algebras is based on the fact
that if hg is a CR-solvable LCR-ideal and go/hg is a CR-solvable LCR-
algebra, then gg itself is CR-solvable. Two facts follow: the first con-
sequence 1s that a LCR-algebra gg is CR-solvable if and only if
its derived Dg, is CR~nilpotent. The second one is the existence of
a maximal CR-solvable LCR-ideal rj, said the CR-radical of gg. Obvi-
ously, a CR-solvable LCR-algebra coincides with its CR-radical. Then,

we define CR-semisimple a LCR-algebra with vanishing CR-radical.

Lemma. Let go be a LCR-algebra whose LCR-structure is (p,J).
Then, the radical r(p) of p is given by the intersection r* N p and it is
invariant under J.

Proof: since r* N p is a solvable ideal of p, it is contained in the
radical r(p) = r(go) N p. By Proposition 5.8 of Chapter 2, r(p) is
invariant under J. thus, if r(p) is not null, r(go) is a CR-solvable LCR-
ideal. Hence, r(go) is contained in r*(gp) and their intersection with p

coincide. B

A direct consequence of the Lemma is that the LCR-algebra gy is CR-
semisimple if and only if p is semisimple. In particular, a semisim-

ple LCR-structure (p,.J) is both a LCR-structure of a suitable Levi-
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subalgebra and a Levi-flat CR-structure of the centralizer of r.

3. In order to introduce the Cartan’s criteria, define the representation
ot go — gl(p) : & — adx|p. Thus, B¥(X,Y) is equal to B¥(X.17).
for any X,Y in go. Hence, the criteria for CR-solvability and CR-
semisimplicity are the following

1. the LCR-algebra gg is CR-solvable if and only if B¥ (X, [}. Z])
vanishes identically;

2. the LCR-algebra gy is CR-semisimple if and only if B¥ is non-
singular.
A direct consequence of the second criterion is that a CR-semisimple
LCR-algebra gy is decomposed as go = ((go) ® Dgo. In particular. we
prove that gy is a noncompact reductive Lie-algebra. In order to do
that, we define a CR-mazimal LCR-algebra and we show that a CR-
semisimple LCR-algebra is sum of CR-maximal CR-semisimple LCR-

algebras.

Definition. 4 LCR-algebra (go,p,J) is said to be CR-mazimal if

any LCR-ideal, different from go is contained in p.

Notice that, if p has codimension less then 1, gg is a CR-maximal LCR-
algebra. Vice versa, when gg is a CR-maximal LCR-algebra, three cases

are possible:
1. go admits a complex structure Jg such that Jo|p = J;

2. p has codimension 1;
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3. go is CR-semisimple.

The third class of CR-maximal LCR-algebras takes a great importance
in the structure theory of CR-semisimple LCR-algebras: let go be a
CR-semisimple LCR-algebra. Since p is a semisimple ideal, there are
some simple ideals p; of p such that p = ®;exp;. Moreover, each p;
is J-stable. Consider, now. the set S5; of the LCR-ideal g; such that
g; N p = p;. Then, 1t is possible to choice some g; such that

1. g; is a CR-maximal LCR-algebra;

2. ging; ={0}

g = Qiex ;-

Thus, via the CR-maximal LCR-ideals, we describe the whole CR-
semisimple LCR-algebra. Of course, each of them is CR-semisimple.,
since it is a LCR-ideal.

Furthermore, the only LCR-ideals of a CR-maximal CR-semisimple
LCR-algebra (go, p, J) are the trivial ones: {0}, p, go. Finally, the ideal
p** assumes one of the following forms;

{0}
ptto = { RH
ho
So, a CR-maximal LCR-algebra is reductive and its centre either is
onedimensional or vanishes. Let us return to the generic CR-semisimple
LCR-algebra (go, p, J). We conclude showing that p is contained in the
semisimple LCR-ideal Dgy and that g is reductive.
In fact, since p is semisimple, it coincides with its derived and so is
included in Dgy. Otherwise, the CR-maximal CR-semisimple LCR-

ideal g; (which are factors of gg) may be divided in three families
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I={gi:gi=npit
IT={gi:g =p:i®RH}

IIT={g;: g =p:®h}

Let g/ denote the direct sum of the elements of 1. In a similar way. we
define g{! and g{!!. By construction, gl and gl!! are semisimple and
gll is reductive. Thus, the whole CR-semisimple LCR-algebra go =

gl © gl’ © gl!! is reductive. Moreover, Dgo = p & @;h; is semisimple.
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CR-semisimple

LCR-algebras.

4.1 Introduction to Chapter 4.

A CR-semisimple LCR-algebra g is a LCR-algebra whose Killing CR-
form BY is nonsingular. The existence of such a nonsingular bilinear
form is the foundation of the Theorem of existence of a Cartan sub-
LCR-algebra h. Essentially, a Cartam sub-LCR-algebra is a maximal
CR-abelian sub-LCR-algebra, whose elements are semisimple. More-
over, the decomposition in CR-root spaces is given (Theorem 4.3.1).

Such a decomposition implies that h is a Cartan subalgebra (i.e. h coin-
cides with its own normalizer n(h)) and it is abelian (Theorem 4.4.1).
Thus an ady-stability result is proved. Hence, we give a decomposi-
tion of g into the semidirect sum by ad of a semisimple ideal and a
reductive subalgebra. In particular, when g is a CR-semisimple LCR-
algebra, then there exist an ideal h containing g and a subalgebra k
contained in ¢ such that g = h .4 k. Moreover, if h 1s decomposed

ash=3®h;®...h;, then qp coincides with h; ® ... & h; © k (Theo-

93
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rem 4.4.9).

Since the roots of ¢ and of qo determines completely the LCR-
algebra g (Theorem 4.5.1), the Lie-product may be described with re-
spect of the CR-roots. Thus, we have the

H, X = a(H)X,

i it = —a
(X, Xs] = { 0 tatfeA
NopXors ifa+8€A.

Via these relations, the Chapter is concluded with a Theorem of ex-
istence of a real form gj of g which admits, as an ideal, a compact
real form p* of q. So, we have given a bijection between the set of
CR-semisimple Lie-algebras and the one of Lie-algebras which admit

an even-dimensional semisimple compact ideal.

4.2 Cartan sub-LCR-algebras.

In this Chapter, g denotes a CR-semisimple LCR-algebra whose LCR-
structure is q; q is the direct sum q@@q. For this class of LCR-algebras,
the definition of the Cartan sub-LCR-algebras is a direct generalization

of the classical one.

Definition 4.2.1 A Cartan sub-LCR-algebra of « CR-semisimple LCR-
algebra g is a sub-LCR-algebra h such that

1. h is @ mazimal CR-abelian sub-LCR-algebra in g;

2. ady is a semisimple map of g, VH € h;

3. hNq is a Cartan subalgebra of q.
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Proposition 4.2.2 If h is a Cartan sub-LCR-algebra then h N q is
a Cartan subalgebra of §. Vice versa, let h be a marimal CR-abelian
sub-LCR-algebra whose elements are semisimple. Then h is a Cartan

sub-LCR-algebra, when h N q is a Cartan subalgebra.

Proof: let h be a sub-LCR-algebra. Then, h N q is a Cartan sub-
algebra of q if and only if h N is Cartan subalgebra of q. Thus.
hNndg=hnNg®hNgis an abelian subalgebra of q. Let k be a Cartan
subalgebra of ¢ containing h N q. Since g and § are ideals of . the
projections 7q qnd g are Lie-epimorphisms. So, mqk is an abelian
subalgebra containing h N q. Hence, mgk and k N g coincide. Finally.
k coincides with h N ¢ and this one is a Cartan subalgebra. The vice
versa has an analogous proof. B

The Proposition 4.2.2 shows that in the Definition 4.2.1, the third
statement may be substituted with

3. h N qis a Cartan subalgebra of q.

Let g be a generic Lie-algebra. Take an element z in g and denote
with Ag = 0, i, ... A; the eigenvalues of ad;. Then, g is decomposed

as g = Zf:o g(l’, )‘i): where

g(z,\) = {y : (ady — \)*y = 0,for some k}.

Remark, finally, that g(z, A) is a subspace of g, whenever 2 is an ele-

ment of q and A # 0.
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Lemma 4.2.3 Let g be a Lie-algebra, then

(8(Ho, A). g(Ho, p)] € g(Ho, A+ p).

In particular, h = g(Hy,0) is a subalgebra, VHy € g.

Remind that Hp is said to be a regular element when dim g(Hy,0)

is the minimum of dim(g(X.0).

Lemma 4.2.4 When Hy is regular, the subalgebra h is nilpotent. More-

over, if Hy is a real element, h 1s T-stable.

Now, the subspaces g(x, A) will be used in the following Lemmas,

to prove the

Theorem 4.2.5 Let g be a CR-semisimple LCR-algebra. Then there
exists a Cartan sub-LCR-algebra h of g.

Since q is semisimple. any element z € g is associated to a unique
element @z € q such that ad; and ad,, coincide on q. The map ¢ is a
Lie-epimorphism and its restriction to q is the identity. As well as we
have constructed ¢ it is possible to define  with respect to ¢.

Let us recall a classical

Proposition 4.2.6 Let f : g — g’ be a Lie-epimorphism. Then I
sends regular elements of g in regular elements of g’ and the rank of g

is greater or equal to the one of g’'. [BO2] B

Corollary 4.2.7 The epimorphism @ maps go, in §.
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Lemma 4.2.8 Let Hy be in gor, then hN q s a Cartan subalgebra for

q. In particular h is a sub-LCR-algebra.

In fact g(Ho,0) N q coincides with {z € § : ad®Hy = 0}. But, when
¢ is in q, ad*Hy = ad*3Hy and $Hp is in §,. Hence, g(Ho,0)Nq =
(¢ Hp,0), which is a Cartan subalgebra of q. B

The Lie-epimorphism » maps h onto h N g. In fact, the proof of
Lemma 4.2.8 shows that $h is included in h N . While hn g =

¢(hnq) < ¢h.

Lemma 4.2.9 Let g be a CR-semisimple LCR-algebra, then h is CR-

abelian.

Proof: take xz € g(Ho,\) and y € h. Then ad;ad, maps g(Ho. 1)
in g(Hp, A\ + p): so its trace vanishes. Otherwise, since h is nilpotent.

B([H, Hs], H3) vanishes, if each H; is in h. Thus, Dh is contained in

gL
Finally, let [Hy, Hs] be in Dh N q, then

Bw([HlaHﬂ»x) = B([HDH?]?Q:) = 07

for all z in g, and [H;, Hs] is in g** which vanishes. ®
Lemma 4.2.10 Let Hy be in gor, then h is mazimal CR-abelian.

Proof: suppose there exists a CR-abelian sub-LCR-algebra k con-
taining h. Since hNqis a Cartan subalgebra, kNq coincides with hNgq.
Take k, O h, such that k =kNg® k, and h =hnNgq&h,. Consider
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a linear subspace 1 such that k, = h, & 1. Then k = h @ 1. Trivially,
adg, |1 is invertible. Consider an element L € 1, then ady,L € h and

there is an integer k such that adf; L = 0. So L vanishes. B

Lemma 4.2.11 Let Hy be in go,, then ad, is a semisimple map of g,

for any x in h.

Proof: let us consider the decomposition g = 3", g(Hp, A) and the
linear subspace V3 = {z : (ady — B(H)I)*z = 0,YH € h}. Obviously,
when 3(Hp) is equal to A, V3 is included in g(Ho, A). Hence, there exist
some J; such that g = >, V3.

Take a generic element H € h. Then, there is given the canonical
decomposition ady = S + N, where S is a semisimple derivation and
N is a nilpotent one. Since S is a polinomial in ady, Sh is contained
in h. In a previous Lemma, we have shown that ady|y is nilpotent; so,
S|n vanishes identically. Moreover, S is a derivation of g and there is
an element Z in the centralizer of h, such that S = adj.

Let us define the sub-LCR-algebras hy = h @ CReZ and hf, =
h & CImZ. Since, Dhz = Dh’, = Dh, they are CR-abelian and Z is
in h.

Furthermore, S maps each Vj in itself and SX = 3(H)X, for all X
in Vs. Take, now, an eigenvector X’ € V3. Then SX' = B(Z)X’ and
B(H) = B(Z). Hence, B(H. H') = 5; S H)8:(H')dimV,.

A direct computation shows that the subspace N g(Hy, \) coincide
with q(@Ho, A); while the map ¥(H) = adg|q maps V3 N q in itself.
Then, it is
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BY(H,H') = 3 B:(H)B:(H')dimV5, N &

So BY(Z — H.H') vanishes. Thus, since B¥(Z — H,z) = 0, for all
x € g(Hyp, \), with A # 0, it follows that H = Z. ®

The existence of a Cartan sub-LCR-algebra will be used, in the
next Section, to decompose the CR-semisimple LCR-algebra g in its
CR-root spaces. This decomposition will show directely the existence

of a real form g7 which admits a compact ideal p* which is a real form

of § (Theorem 4.5.4).

4.3 CR-root space decomposition.

Following the classical structure theory of semisimple Lie-algebras, [HE].
and via the existence of a Cartan Sub-LCR-algebra h, we study the
structure theory of CR-semisimple LCR-algebras.

Let o be a linear function on the complex vector space h. With g~

we shall denote the linear subspace of g,

g ={reg:[Hz]=alH)z,VH € h}

When g® does not vanish, « is said to be a CR-root. In that case g is
a CR-root space. Obviously, g° coincides with h and [g®, g”] C g*+7.
as a consequence of the Jacobi identity. The set of CR-roots is denoted

by A. In the terms of these notations, we give the
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Theorem 4.3.1 Let h be a Cartan sub-LCR-algebra of g. Let A and
A denote the set of CR-roots of g and the set of roots of §, respectively.
The following statements are true:

(i) g = h @ Saeag®.

(ii) the CR-root spaces g* and g are orthogonal under B, whenever
a+ 3 #0.

(i1i) the restriction of B¥ to h x h is nonsingular. For each lin-
ear form o on h there exists a unique element H, € h such that
BY(H,H,) = «(H), for all H € h.

(iv) if a € A, then —a € A, [g*,g7%] = CH,, and o(H,) # 0.

(v) dimg® = 1.

Proof: (i) if the subspaces h and g%, « € A, were linearly de-
pendents, there would be some H € h and X, € g such that 0 =
H+%,X,. Choose H; in h such that a(Hy) # 0, for all @« € A. Then,

0= [Hy, H + Y [Hy, Xo] = [Hy, H + 3. a( H,) X,

& o
Hence, [H1, H] and o(H;) vanish: so there is a contradiction. Thus,
the sum h & ®,eag® is direct.

Obviously, [hNg, h] € h and [hN§g, g*] C g*. Furthermore, adg(hn
q) is an abelian family of semisimple elements, so it is semisimple. In
this hypothesis there exist some one-dimensional invariant subspaces
g such that g = 3, g;; whenever, for any 7 there exists an o such that

g: & g*. This fact concludes the proof of ().
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)
at+5 and

(i) when X is in g* and Y is in g, adxady maps hin g
g" in g®t#*7. In particular, its trace vanishes.

(#i3) let Hy be such that B¥(Hy, H) = 0, for all H in h. Consider
the generic element of g, X = H + Y, X,. Then, it is BY(Hp, X) =
v, B¥(Hy, X,). Let us compute the trace of ¥(Ho)¥(Xs) 1 4 — Q.

Remind that, since ¢ is semisimple, it is decomposed as

d=hnNgse,.:4™
Consider, now, the map j : A — A : & — &o 3. Since Plg is the
identity, g’® D g°*. Hence, j& is a CR-root of g. By direct calculation.
we show the following inclusions

{ hngcg®

S H)b(X) ] & = {0}

& C g,
Remark that §* N g®t% C g% N g*™% = {0}. So, the trace of
W(Hy)h(X,) vanishes and Hy must be zero, since BY is nondegenerate.
(iv) let X, be in g*, while g~ vanishes. Then B*(X,, X) should

vanish, for all X € g, which is false. Now, compute

BY([Xa, X_a), H) = BY(Xa, [ X_a, H]) = B¥(Xa, X—o)B¥(H,, H).

Hence, [X,, X_o] = B¥(X4, Xoo)H,. Finally ao(H,) = BY(H,, H,) #
0. And (iv) is proved.

The proof of (v) is the same as in the semisimple case, cf. [HE]. @

Corollary 4.3.2 The map j : A — A is injective.
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In fact, since g* is one-dimensional, g’% = q%. Now, let us divide the
set of the CR-roots as follows: A = AgU Ay, where Ag = {a:hngC
Kera} and Ay is its complement. It is not difficult to see that the map
i = Ao rlhng Is injective; and that g1 = g*. Furthermore,

there is the

Proposition 4.3.3 The sets Ay and A have the same cardinality. More-

over j1 0] (resp j o ji) is the identity of A (resp. Ay).

Proof: an easy computation shows that

j10j5¥:j1&°95:&09z’!€1:5‘

Jonia _ xjpo o
g =q" =g =

The following Proposition 4.3.4 and Lemma 4.3.5 will be useful to

give a decomposition in real subalgebras of the Cartan sub-LCR-algebra

h.

Proposition 4.3.4 Let o be in A and B8 be any CR-root. Define the
a-series containing B as the set of all roots of the form B + na where
n is an integer. Then

(1) the a-series containing B is an uninterrupted string of the form

B+na (p<n<gq) The integers p and q satisfy the condition

=p+ta.

(it) let Xy be in g%, X_, in g7, and X in g®. Then,
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~ > 1 - e 7 a
[X_as [Xa, Xpl] = g(—_Q”Pla(Ha)Bw(AmA—a)Aﬁ'

(iii) the only roots proportional to o are —a, 0, o

(iv) suppose o + 3 # 0. Then, [g*,g°] = g*™*. ®

Since the Killing CR-form is nonvanishing, it is possible to consider
a family of elements {F, € g%}aca such that BY¥(E,,E_y) = 1. This
fact is the foundation of the proof of Proposition 4.3.4. The complete
computations coincide with the ones of the semisimple case (in which

the Killing form B replaces the CR-one B¥) as developed in [HE].

Lemma 4.3.5 An element H € h such that a(H) =0, for all € ;.

is in the centralizer c(q).

In fact, since any CR-root a of A; is of the form & o ¢, with & in Al
then @ H vanishes. B

A direct consequence of Proposition 4.3.4 is that on the real sub-
space hg = Y ,ca RH,, the Killing CR-form B¥ is real and positive
definite. Moreover, hg is a real form of h: h = hr & ¢hgr.
In the last part of the present Section we shall prove that both ¢ and
g may be seen as sums of their intersection with h and some CR-root

spaces.

Lemma 4.3.6 Let a be a CR-root in Ay. Then H, = ﬁjla, where H,
and Hs are defined by
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BY(H,,H) = o(H),YH € h;

Bq(Hs,H) = &(H),YH e hN g.

Proof: a direct computation shows that, if & = j;0,

BY(Hs, H) = By(Hs. $H) = 4@(H) = o(H) = BY(H,, H)®

Finally, recall the following notations: let ' be a subset of A. We
denote with hr the subspace Y ,er CH, and with gl the subspace
Daerg®. Remark that [h, g'] C gl and [gF, g!1] C gTT % S hee ).
In particular we shall write h; and g for the subspaces ha, and g*7,
respectively. In these terms, Lemma 4.3.6 says that q = h; @ g!.

Let ; bein A;. By definition of Ao, ag(H,,) vanishes. In fact He,
is in h N q. This means that B(H,,, Hy,) = 0. In particular, there is

the

Proposition 4.3.7 The bilinear forms BY |y, «p, and qulhlxh1 are non-

singular. Moreover, hy = Ny en, Kerag and hg = Nayen, Kerag.

Proof: the first part is a consequence of the fact that B¥|h.p is
nonsingular. Then, the above computations show that ha, is a subset
of Nagea, Nerag. Finally, take, H = h** H,, + h® H, in Ny,ea, K erao.
By definition, it is Sy(H) = h*By(H,,). Decompose A% as a® +
10° and define A = a¢*H,, and B = b*H,,. Then B(Hp A) =
B(Hp,B) =0,VB € A. Thus A and B vanish. =
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Let us recall that when h' is a subspace of h and T is a subset of .
then the linear space h’ @ g is a subalgebra if and only if T' is closed
and h’ 2 hrﬁ(-r).

Define, now, the subsets

A1(q) = {a € Ay : Kera does not contain h N q}

A(G) = {a € Ay : Kera does not contain h N q}.

Since q and q are ideals of the semisimple Lie-algebra g, they are

adpng-stable. Hence, we may apply the

Lemma 4.3.8 Let h be a Cartan subalgebra of a semisimple Lie-alg-
ebra g and V a linear subspace of g. Define the set A(V') of the roots
o € A such that g* C V. Then the greatest linear subspace of V' which

is ady-stable is V. Nh +g®V). [BO2]. m

So, we obtain that q = hNq® g®'(@ Since, g=hnNg@&hng= gl
the following relations are true:

() hng=hnNng&hnNg;

(i9) Ay = As(q) U Ag().
In particular, when «a is in Ay(q), —c is in it, too. And the Cartan

subalgebra h N q coincides with ha,(q). B

Remark 4.3.9 The above decomposition gives a construction for dif-
ferent CR-structures of g. Let A* C A be a closed subset such that

1. A*nNA" = {0}
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2. [Hy, Hg] = 0,Ya, 3 € A~

Then, the subspace q* = ha- @ g2 is a CR-structure.

Proposition 4.3.10 The closed set A* = {+a,0} satisfies the two

conditions of Remark 4.3.9.

In fact, the first one is trivial. For the second, let us compute

BY([Ha,H_o],H) = BY(H,|[H,, H_.])= B*([H,H,],H_.) =
= Bw([HavH]a Ha) = Bw(HO,, [HaaHD =
= BY([H., H,],H)=0. ®

4.4 A decomposition of g.

Recall that a Cartan subalgebra h is a nilpotent subalgebra which coin-
cides with its normalizer n(h). In this Section, we proof that a Cartan
sub-LCR-algebra is an abelian Cartan subalgebra. Hence, we make use
of the abelianity to decompose the CR-semisimple LCR-algebra g. The

final result is based on some facts about ady-stability proved in [BOZ2].

Theorem 4.4.1 Let h be a Cartan sub-LCR-algebra. Then h is a

Cartan subalgebra of g.

Proof: by Lemma 3.2.6. the subalgebra h is nilpotent. Moreover,
take an element X = H 4+ ¥ ,ca X, of n(h). Then, by definition
(X, ') = [H,H') + Y pen o(H) X, is in h, for all H' € h. Hence, X,
vanishes, for all o in A. &

Even the converse is true. In fact,
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Proposition 4.4.2 Let h be a 7-stable Cartan subalgebra of g such
that h N q is a Cartan subalgebra of q. Then h is a Cartan sub-LCR-

algebra of g

Proof: adgyg — g is a semisimple map and h is a CR-abelian sub-

LCR-algebra. The maximality of h is shown as in Lemma 4.2.10. &

Proposition 4.4.3 Let h be a Cartan subalgebra of g which is a sub-
LCR-algebra. then h is a Cartan sub-LCR-algebra if and only if h N q

is a Cartan subalgebra of q. B

Moreover, h has the same properties as the Cartan subalgebra of a

semisimple Lie-algebra.

Proposition 4.4.4 The Cartan subalgebra h is a mazimal abelian sub-

algebra of g.

Proof: let us compute
B¥([H, Hs), H) = Ba(¢[Hy, Ha), 9Hs) = Bg([pH1,$ Ha|, 9 Hs).
Finally, [pH1, @ H,] vanishes, by the abelianity of h N q. Hence, since
BY is nondegenerate on h x h, [Hy, Hy] vanishes, too. The maximality
follows by the definition. &

Since h is abelian, the adj-stable linear subspaces are described by

the

Lemma 4.4.5 Let V be a linear subspace of g and A(V) the set {a €
A g* C V}. Then, the greatest ady-stable linear subspace of V' is
VNh+gt"),
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As a consequence of Lemma 4.4.5, we describe the ady-stable sub-

algebras.

Proposition 4.4.6 The ady-stable subalgebras of g are the linear sub-
spaces W' & gb, where I C A is a closed subset and h' C h is a linear

subspace including hrq(.r). ®

Proposition 4.4.7 Let k C g be an ady-stable subalgebra. h' a sub-
space of h and I' a subset of A such that k = h' @ g''. Then, k is
reductive if and only if T = —I'. ®

Now, we have all the elements to give the main result of the Section.
In the previous Section we have decomposed g as g = § @ ho @ g°. Let
us pose g = ho & g% Since Ag is a closed set such that Ay = —Ag,
Qo 1s an ady-stable complex subalgebra of g. Moreover h; C ¢(qo) and
qo € n(g!). Finally, remark that g = q Gag qo, and we have proved
the

Theorem 4.4.8 Let g be CR-semisimple. Then, there exists a reduc-
tive subalgebra qo such that g = q@.qqo. The subalgebra hg is a Cartan

subalgebra of qo. &

To give a deeper description of g = ¢ @aa qo, let us study a Lie-
algebra g decomposed as g = h@sk, where the first factor is semisimple
and the second is reductive.

As we have remarked in Chapter 1, since h is semisimple, there exists

a Lie-homomorphism B : k — h such that §(K) = adgy, VK € k.
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Consider now the decompositions in simple ideal h = hy © ... = hy
and k = ko ® k; & ... O kg, where kg is the centre ((k). Thus, via a
permutation, the ideal KerB may be seen as KerB = kg, @ ... = k3,
and k = RerBokg,,, ©...Okg,. Remind that, when KerB coincides
with k, § vanishes and the sum is direct.

Moreover, define h? = h® KerB and k? = kg,,, @...Okg,. Then h”
is an ideal of g, kP is an its subalgebra and one of them is semisimple.
Furthermore, the map B : k? — h : K — B(K) is injective and k*
is isomorphic to the subalgebra Bk? of h. Finally, remark that the

following decompositions of g are given

g:h%}gk:hB @5kB§11B@adBkB.

Theorem 4.4.9 Letg be a CR-semisimple not semisimple LCR-algebra.
Then there exist an ideal h containing q and a subalgebra k contained

in q such that g = h $.9 k. Moreover, if h is decomposed as h =

q®hy ®...hy, then qp coincides withh, ©...0h Ok. &

4.5 Real CR-forms.

Let g and g’ be two Lie-algebras endowed with two semisimple LCR-
structures q and q'. Since q and q’ are semisimple Lie-algebras, any
one-to-one R-linear map fi : hyg — h!y such that ff maps A} onto
A; can be extended to a Lie-isomorphism fl :q — q'. Such an isomor-

phism is defined by
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leoz - Hoz’

fiEy = Eq,

where o = fio' and the E! s satisfy B(E,, E_,) = 1.
The same construction may be done with a map fo: hor — hjp (with

the same hypothesis), whose extension fo maps do onto qp.

Theorem 4.5.1 Let (g,q) and (g',q’) be CR-semisimple LCR-algeb-
ras, h and h' their Cartan sub-LCR-algebra. Let A and A’ denote the
corresponding CR-root systems. Suppose f : hg — hj be a R-linear
one-to-one map such that fhg C hip and ft maps A% onto Aj. Then
f can be extended to a Lie-isomorphism f : g — g’, which sends q in

q and qo 1n qp.

Proof: consider the restrictions f; = f|y R’ 7 =0,1. Both of them
J
admits an extension fj. Define f = fi @ fo. A direct computation

shows that f is a Lie-homomorphism. &

Theorem 4.5.2 For each nonvanishing CR-root «, there is a vector

X, such that

[H, X, = a(H)X,
H, if B = —«
[Xa, X5] = ¢ 0 ifatfgn
NopgXoys ifa+ e A.

where Nog = —N_, 5.
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Consider now a generic complex Lie-algebra g. It may be thought
as a real Lie-algebra g® endowed with a complex structure Jg given

by the multiplication by 2.

Definition 4.5.3 A real form go of g is a real subalgebra of g® such
that g® = go & Jrgo. A real CR-form of the LCR-algebra g is a pair
(g0, Po) such that go is a real form of g and po is a real form of q.
A real CR-form (go,po) 1s said to be CR-compact if po is a compact

subalgebra.

Theorem 4.5.4 Every CR-semisimple LCR-algebra admits a CR-com-

pact real CR-form.

Proof: the real subspaces

gi= > Rill, oY R(Xo—X_o)® > iR(Xa+ Xoa)

aEA aEA aEA

p = > RiH.,& Y R(Xo—X_o)@® > iR(Xs+ X_0)

€A, aEAq aEA;

are Lie-subalgebras, since N, 3 = —N_, _g. By construction, the pair

(g5, p*) is a real CR-form. Finally, we may compute, with respect of

(Hy, Xs), that B

prxp+ 1s negative definite. So, p™ is compact. &
Thus, in the real terms, the classification of the LCR-structures

(g0, P, J) given on a semisimple ideal is equivalent to the classification
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of the real Lie-algebras gj which admit an even-dimensional compact
semisimple ideal p*. In fact, if p* is a compact semisimple ideal of
g0, 4 = p” ®r C is a semisimple ideal of g = gy @r C which admits
p” as compact real form. So, if J denotes the multiplication by i, {
is equal to p* & Jp*. Hence, the subspace q of the elements z — i.Jx
is a complex ideal of g which does not intersect §. Then, the set of
CR-semisimple LCR-algebras and the one of real Lie-algebras with an

even-dimensional semisimple compact ideal, are bijective.
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4.6 Appendix.

1. Let us remind that g is CR-simple if any nontrivial LCR-ideal
contains §. In particular, q is simple. The vice versa is also true. In
fact, whenever q is simple, any LCR-ideal h of g contains q. thus. g 1s

CR-simple. Obviously, a CR-simple LCR-algebra is CR-semisimple.

Theorem. Let g be a CR-semisimple LCR-algebra and q be de-
composed as q = q1 & ... © qi. then, there exist some LCR-ideal g,
such that

1.g=810...08

2. g.Nq=q;

3. g; is CR-simple. &

Furthermore, we link the CR-simplicity and the CR-maximality, via

the following

Proposition. 4 CR-simple LCR-algebra is CR-mazximal.

The proof is a direct consequence of Theorem 3.7.4.

Thus, a CR-simple LCR-algebra g satisfies the following properties:
1. g is reductive;
2. its center ((g) has dimension less then two;
3. its semisimple part Dg is the sum of two, three or four simple ideals.

In particular,
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qOq
qQ0qoCH
g=¢ q0qOCHOCH
qOqoh
qOqOhoh

2. Take, now, a CR-semisimple LCR-algebra g endowed with its
CR-root set A.

Lemma. the set A is a reduced root system of the Cartan sub-LCR-
algebra h.
Proof: by definition, A spans h*. Moreover, consider the reflection

Seff = 3— Q%a, where < «, f >= a(Hg). By Proposition 4.3.4, S,

—9Zab>
“a,a>

maps A onto A and the number a,5 = is a integer. Finally,

if mais aroot, m = —1. ®

The root system A is no irreducible, in fact
A=AgU4,
< Ao, A >= 0.
Moreover, A1 = A;(q) U A1(q) and < A(q), A(g) >= 0.

Then, we may consider a simple root system ® = Qi,...,0 "} en-
) 1 7
dowed with its Cartan matrix a;; = —2%5—2%. Via the Cartan matrix,

we construct the diagram of g. It consists of a vertex for each «;, with
aijaj; lines betweew a; and oy, 1 # 5.
Remind that a diagram is connected when ® is irreducible; and @ is

irreducible if and only if g is simple. The connected diagrams are
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3. In this point, we describe the disconnected diagram of a CR-
semisimple LCR-algebra. Let us stars with the Cr-simple case.

A CR-simple LCR-algebra g is either semisimple (if it is of the I of
the IIT type) or reductive with center of dimension one or two. This
means that the diagram has two connected components (if g is of type

[ or II); while the connected components are three or four, for the type

I11.
type | Dg ((g) number of components
I g {0} 2
II |q&qg CH 2
CHG@CH
III g {0} 3
4

Finally, the disconnected diagram of a CR-semisimple LCR-algebra

is the disjoint union of the diagram of its CR-simple LCR-ideals.
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