

ISAS - INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

LCR-structures and LCR-algebras

CANDIDATE

SUPERVISOR

Daniele Gouthier

Prof. Giuseppe Tomassini

Thesis submitted for the degree of "Doctor Philosophiæ" Academic Year 1995/96

SISSA - SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

Strada Costiera 11

TRIESTE

LCR-structures and LCR-algebras

CANDIDATE

SUPERVISOR

Daniele Gouthier

Prof. Giuseppe Tomassini

Thesis submitted for the degree of "Doctor Philosophiæ" ${\bf Academic~Year~1995/96}$

A Marilena. Nel giorno della sua partenza. Buon viaggio.

Contents

Pr	eface	3
1	CR-	structures. 9
	1.1	Introduction to Chapter 1
	1.2	Basic definitions
	1.3	Sub-CR-algebras
	1.4	Semidirect sums of CR-structures
	1.5	Appendix
2	LCF	R-structures. 31
	2.1	Introduction to Chapter 2
	2.2	Semisimple LCR-structures
	2.3	Solvable LCR-structures
	2.4	The Levi-Mal'cev decomposition 41
	2.5	Levi-flat CR-structures
	2.6	Appendix
3	LCF	R-algebras. 53
	3.1	Introduction to Chapter 3
	3.2	CR-nilpotent LCR-algebras
	3.3	CR-solvable LCR-algebras 60
	3.4	The CR-radical
	3.5	Cartan's criteria
	3.6	CR-semisimple LCR-algebras
	3.7	CR-maximal LCR-algebras
	3.8	The CR-Levi decomposition
	3.9	Appendix

4	CR-	-semisimple LCR-algebras.	93
	4.1	Introduction to Chapter 4	93
	4.2	Cartan sub-LCR-algebras	94
	4.3	CR-root space decomposition	99
	4.4	A decomposition of g	106
	4.5	Real CR-forms	109
	4.6	Appendix	113

Preface.

Let g_0 be a real Lie-algebra. A complex structure on g_0 is an endomorphism $J \in GL(g_0)$ such that $J^2 = -id$ and [JX, JY] = [X, Y] + J[X, JY] + J[JX, Y], for all $X, Y \in g_0$, [JA]. If g denotes the complexification of g_0 , $g \doteq g_0 \otimes_{\mathbb{R}} \mathbb{C}$, then $q \doteq \{X - iJX : X \in g_0\}$ is a complex subalgebra and there is the vector space decomposition $g = q \oplus \overline{q}$. Conversely, any such splitting $q \oplus \overline{q}$ defines a complex structure on g_0 setting JX = -Y, if $X + iY \in q$.

A complex structure on g_0 induces a complex structure on G_0 , the Lie-group associated to g_0 , for which left translations are holomorphic.

The study of complex structure on even dimensional real Lie-algebras goes back to Morimoto, who showed that every reductive real Lie-algebra has infinitely many complex structures, [MO]. In [SN]. D.Snow gave a complete classification of those complex structures on a reductive Lie-algebra, which are "regular" (see Introduction to Chapter 2).

A natural generalization of these complex structures is the notion of CR-structure which has been introduced in [GT] (see also [AHR]). A CR-structure on a real Lie-algebra g_0 is the datum of a pair (p, J),

4 Preface

where p is a real subspace of g_0 and $J \in GL(p)$ satisfies

- 1. $J^2 = -id;$
- 2. $[JX, JY] = [X, Y] + J[X, JY] + J[JX, Y], \forall X, Y \in p;$
- 3. $[JX, JY] [X, Y] \in p, \forall X, Y \in p$.

Even in the present case, the complex subspace $\mathbf{q} = \{X - iJX : X \in \mathbf{p}\}$ is a subalgebra of \mathbf{g} such that $\mathbf{q} \cap \overline{\mathbf{q}} = \{0\}$, in such a way that $\mathbf{g} = \mathbf{q} \oplus \overline{\mathbf{q}} \oplus V$, where V is a linear space spanned by real vectors. Both the notations, (\mathbf{p}, J) and \mathbf{q} , are employed to indicate a CR-structure.

Consider now a real Lie-group G_0 , whose Lie-algebra $Lie(G_0)$ is g_0 , endowed with a CR-structure. Then, the group G_0 inherits a structure of CR-manifold for which the left translations are CR-maps, [BOG], [WE], [AHR]. Moreover, if the CR-structure is such that \mathbf{p} is a real subalgebra (and consequentely $\mathbf{q} \oplus \overline{\mathbf{q}}$ is a complex subalgebra of \mathbf{g}), the Lie-group G_0 is a Levi-flat manifold: i.e. foliated by complex submanifolds ([BOG]). In such a situation the CR-structure (\mathbf{p} , J) is said to be Levi-flat. An interesting class of such CR-structures is given by the ones whose leaf through the unit of G_0 is a subgroup. A direct consequence of this fact is that both right and left translations are CR-maps. In particular, \mathbf{p} is a real ideal of \mathbf{g}_0 , ad_X is a CR-map, for every $X \in \mathbf{g}_0$, and the corresponding complex subalgebra \mathbf{q} is an ideal. These CR-structures are said to be CR-structure of Lie. They are shortly called LCR-structures.

Via the knowledge of the LCR-structures is possible to study the Levi-flat ones. Indeed, consider the bilinear skewsymmetric form Γ : $\mathbf{p} \times \mathbf{p} \to \mathbf{p} : (X,Y) \mapsto [X,Y] - [JX,JY]$. The pair (\mathbf{p},Γ) is a Lie-

algebra and the map J is invariant under Γ_X . Thus, any CR-structure (\mathbf{p}, J) on \mathbf{g}_0 is a biinvariant structure on (\mathbf{p}, Γ) , (see Chapter 2).

The content of this thesis is a general treatment of LCR-structures (\mathbf{p}, J) on a real Lie-algebra \mathbf{g}_0 . For our study, we adopt two points of view. According to the first one, the central role is taken by the pair (\mathbf{p}, J) . We investigate the structure of the ideal \mathbf{p} and all the possible J's on it. Some limitations are found (semisimple compact Lie-algebras do not admit any LCR-structure) and a constructive method is developed (the LCR-structures of a solvable Lie-algebra are given on the even-dimensional ideals by the "multiplication by i"). The main result is a structure theorem for (\mathbf{p}, J) , (Theorem 2.4.3):

let $g_0 = \mathbf{r} \oplus_{ad} \mathbf{s}$ be a real Lie-algebra. Suppose (\mathbf{p}, J) is a LCR-structure on g_0 ; then $(\mathbf{p_r}, J_\mathbf{r})$ and $(\mathbf{p_s}, J_\mathbf{s})$ are LCR-structures on \mathbf{r} and \mathbf{s} , respectively; and (\mathbf{p}, J) is their semidirect sum by the adjoint derivation. Vice versa, if one considers two LCR-structures $(\mathbf{p_r}, A)$ and $(\mathbf{p_s}, D)$ which verify

- 1) $[p_s, r] \subset p_r$
- 2) $[\mathbf{p_r}, \mathbf{s}] \subset \mathbf{p_r}$
- 3) A[X, V] = [X, AV]
- 4) A[U,Y] = [U,DY]

their semidirect sum by ad is a LCR-structure on g_0 .

For the second approach we study the "CR-properties" of \mathbf{g}_0 depending on a fixed LCR-structure (\mathbf{p}, J) . As in the classical case, we introduce the fundamental notions of CR-nilpotence, CR-solvability, CR-semisemplicity. The characterization of these properties for a LCR-

Preface

algebra are expressed, in terms of $g = g_0 \otimes_R C$ by the following table

6

nilpotent : $C^k g = 0$	CR-nilpotent : $\mathbf{q} \cap \mathcal{C}^k \mathbf{g} = 0$
solvable : $\mathcal{D}^k \mathbf{g} = 0$	CR-solvable : $\mathbf{q} \cap \mathcal{D}^k \mathbf{g} = 0$
semisimple : $B \neq 0$	CR-semisimple: $B_{\mathbf{q}} \neq 0$

(here, as usual \mathcal{C}^k denotes the k^{th} -central element, \mathcal{D}^k the k^{th} -derived and B the Killing form).

Furthermore, for a LCR-algebra a Levi-Mal'cev CR-decomposition is proved (Theorem 3.8.6): g is the semidirect sum by ad of a CR-solvable LCR-ideal and of a CR-semisimple sub-LCR-algebra.

As it is well known, reductive Lie-algebras have a central position in the theory of complex and CR-structures, [MO], [SN], [GT]. Indeed, Morimoto showed that they are always endowed with a complex structure, whenever they are even-dimensional and Snow classified their "regular" complex structures. In Snow's paper the regularity is given demanding the invariance of \mathbf{q} under $ad_{\mathbf{h}}$, where \mathbf{h} is a suitable Cartan subalgebra. In that situation, if Δ is the corresponding root set, then the complex structure \mathbf{q} is given by

$$q=q\cap h\oplus \oplus_{\alpha\in\Pi}g^\alpha,$$

where Π is a suitable subset of Δ . An analogous decomposition of \mathbf{q} works when \mathbf{q} is a CR-structure of codimension 1 and \mathbf{g} is a reductive Lie-algebra of the first category as proved by Gigante and

Tomassini, [GT]. We exhibite a class of Levi-flat CR-structures on a reductive Lie-algebra which are not LCR.

Our investigation of CR-semisimple LCR-algebras concludes by proving that on any noncompact reductive Lie-algebra a semisimple LCR-structure exists. Moreover, the only reductive Lie-algebra without LCR-structure are the compact ones which have a one-dimensional centre (or which don't have centre), Theorem 2.2.3. The other compact ones are endowed with an abelian LCR-structure.

Finally, in the spirit of the classical root space decomposition of semisimple Lie-algebras, a decomposition theorem is given in terms of Cartan sub-LCR-algebras and CR-roots for CR-semisimple LCR-algebras (Theorem 4.3.1). An interesting consequence is that a CR-semisimple LCR-algebra g with LCR-structure q admits a real form g_0^* whose an ideal p^* is a compact real form of q. This is the CR-analogous of the classical theorem: every complex semisimple Lie-algebra has a compact real form, [HE].

CR-structures.

1.1 Introduction to Chapter 1.

This Chapter is devoted to the definition of main concepts about CR-structures on a Lie-algebra g_0 . A CR-structure is a complex structure given on a subspace p of g_0 . So, the complex structures may be viewed as the CR-structures on the whole g_0 . As CR-structures, they are Levi-flat; where the Levi-flatness will assume the meaning specified in the following Section. The study of CR-structures has a complex counterpart: each CR-structure may be read in the terms of a complex subalgebra q of the complexified $g = g_0 \otimes_R C$, such that $q \cap \overline{q} = \{0\}$. Remark that the overlined objects are the conjugated ones, with respect of the conjugation τ induced by the complexification $g = g_0 \otimes_R C$. We shall often say that q is a CR-structure on g_0 . Via this complex subalgebra, we define two subclasses of the set of CR-structures $CR(g_0)$. The class $LfCR(g_0)$ whose elements are characterised by the fact that the subspace $q \oplus \overline{q}$ is a complex subalgebra. They are said Levi-flat. And the class $LCR(g_0)$ for which q is a complex ideal. Of course, the

following inclusions are given

$$CR(g_0) \supseteq LfCR(g_0) \supseteq LCR(g_0).$$

The description of these particular classes will be the aim of Chapter 2.

A Lie-algebra g_0 on which is given the CR-structure (p, J) is said to be a CR-algebra. In Section 1.3, we study and the subalgebras which admits a CR-structure induced by (p, J); and the Lie-homomorphisms with respect of which p is invariant and which commute with J. These subalgebras are said sub-CR-algebras, while the Lie-homomorphisms are the CR-homomorphisms. Notice that a sub-CR-algebra is a real subalgebra h_0 of g_0 on which (p, J) induces the CR-structure $(p \cap h_0, J_{p \cap h_0})$. For simplicity, we often say that a complex subalgebra h of the complexified g is a sub-CR-algebra when h is the complexified of a sub-CR-algebra, in the sense that it is endowed with a CR-structure (p, J). In the terms of sub-CR-algebras, the concepts of CR-nilpotence, CR-solvability and CR-semisimplicity will be introduced in Chapter 3.

In Section 1.4, we consider the semidirect sums of two Lie-algebras. On them, we describe the CR-structures splitted in the "natural" way: i.e., the ones for which the underling subspace \mathbf{p} is the sum of \mathbf{p}_1 and \mathbf{p}_2 , which are subspaces of the two Lie-algebras. Furthermore, we construct some CR-structures even when the two factors do not admit CR-structures. The particular case of reductive Lie-algebras is studied.

11

On reductive Lie-algebras a family of Levi-flat CR-structure which are not Lie-s is exhibited.

In the Appendix, we give three examples of real Lie-algebras g_i . i = 1, 2, 3 which show that the inclusions of the CR-classes are proper. Precisely, we shall compute that

$$CR(\mathbf{g}_1) = Gr(2,3) \supset LfCR(\mathbf{g}_1) = \emptyset$$

$$CR(g_2) = Gr(2,3) \supset LfCR(g_2) = \{L(X,Y) : Y^1 = (Y^2)^2 + (Y^3)^2.$$

$$(X^1)^2 + 1 = (X^2)^2 + (X^3)^2\} \supset LCR(g_2) = \emptyset$$

$$CR(\mathbf{g}_3) = Gr(2,4) \supset LfCR(\mathbf{g}_3) = LCR(\mathbf{g}_3) =$$

= $\{\mathbf{p} \in Gr(2,4) : \mathbf{p} \text{ contains a fixed vector } E_4\}.$

1.2 Basic definitions.

Let g_0 be a real Lie algebra. In the sequel, g is its complexification $g_0 \otimes_{\mathbf{R}} \mathbf{C}$. The conjugation with respect to g_0 is the real Lie-isomorphism τ . The conjugated element of X is also denoted as \overline{X} . Moreover, we shall write with [,] and the real and the complex Lie bracket. Just by

definition of real Lie-isomorphism it is $[\overline{X}, \overline{Z}] = [\overline{X}, \overline{Z}]$, which is translated, in terms of adjoint transformations, as $ad_{\overline{Z}} = \tau ad_{Z}\tau$. Obviously, if **a** is a complex subalgebra, too. The object of this thesis may be seen as the complex subalgebras which do not intersect their conjugated ones.

Definition 1.2.1 A CR-structure on g_0 is a pair (p, J) composed by a linear subspace p of g_0 and an endomorphism $J: p \to p$ such that

1)
$$J^2 = -id$$

2)
$$[X, Y] - [JX, JY] \in \mathbf{p}, \forall X, Y \in \mathbf{p}$$

3)
$$[JX, JY] = [X, Y] + J[JX, Y] + J[X, JY], \forall X, Y \in p.$$

In this case, g_0 is said to be a CR-algebra.

Lemma 1.2.2 If (p, J) is a CR-structure on g_0 , then the complex subspace $q \doteq \{X - iJX | X \in p\}$ is a subalgebra of g which does not intersect \overline{q} .

Such a Lemma suggests a "complex" equivalent definition of a CRstructure which is more useful in view of the approach of this thesis.

Definition 1.2.3 A CR-structure \mathbf{q} on \mathbf{g}_0 is a complex subalgebra \mathbf{q} of \mathbf{g} , such that $\mathbf{q} \cap \overline{\mathbf{q}} = \{0\}$.

Proposition 1.2.4 Given a CR-structure \mathbf{q} on \mathbf{g}_0 , there exist r real vectors $X_i \in \mathbf{g}_0$ such that $\mathbf{g} = \mathbf{q} \oplus \overline{\mathbf{q}} \oplus \mathbf{v}$, where $\mathbf{v} = \bigoplus_{i=1}^r \mathbf{C} X_i$. The complex vector space \mathbf{v} is τ -stable. The integer $r = \dim_{\mathbf{C}} \mathbf{v}$ is said the real codimension of \mathbf{q} . Whenever r = 0, \mathbf{q} is a complex structure.

13

Proof: any basis (X_i) which completes in $\mathbf{g_0}$ a basis of $\mathbf{p} = \Re \mathbf{q}$ satisfies the proposition.

The datum of a CR-structure \mathbf{q} is equivalent to the pair (\mathbf{p}, J) given in the Definition 1.2.1.

Lemma 1.2.5 Let p be the real part of q, Req, the CR-structure q determines a linear endomorphism $J: p \to p$ such that X - iJX stays in q, for any $X \in p$. Moreover all the elements of q assumes the form X - iJX.

Proof: the firs part is a trivial consequence of the fact that $\mathbf{q} \cap \overline{\mathbf{q}} = \{0\}$. Consider now $Z \in \mathbf{q}$; obviously ReZ stays in \mathbf{p} , and, consequently. ReZ - iJReZ is in \mathbf{q} . The element $W_Z = Z - (ReZ - iJReZ)$ stays in \mathbf{q} . A trivial computation says that $W_Z = -\overline{W}_Z$, so W_Z vanishes and ImZ = -JReZ.

The above Lemma depends only on the fact that \mathbf{q} is a linear subspace which does not intersect $\overline{\mathbf{q}}$. The fact that \mathbf{q} is a subalgebra links J and the real Lie-product [,].

Lemma 1.2.6 The endomorphism J verifies the conditions

- $1) J^2 = -id$
- 2) $[X, Y] [JX, JY] \in \mathbf{p}, \forall X, Y \in \mathbf{p}$
- 3) $[JX,JY] = [X,Y] + J[JX,Y] + J[X,JY], \forall X,Y \in \mathbf{p}.$

This means that J is a integrable complex structure on \mathbf{p} .

Thus, we have completely proved the equivalence between the real and the complex definition. In the following, we shall denote both with

 (\mathbf{p}, J) and with \mathbf{q} the CR-structure. In each context the notation will be evident.

A particular interest is taken by those CR-structures which have more algebraic structure. In the sense that **p** is either a subalgebra or an ideal.

Definition 1.2.7 A CR-structure \mathbf{q} is said to be Levi-flat if $\tilde{\mathbf{q}} \doteq \mathbf{q} \oplus \overline{\mathbf{q}}$ is a complex subalgebra. When \mathbf{q} is a complex ideal, \mathbf{q} is said a Lie-CR-structure, or a LCR-structure. In the first case \mathbf{g}_0 and \mathbf{g} are said Levi-flat CR-algebras. In the last, LCR-algebras.

The following examples prove that there are CR-structures which are not Levi-flat; and Levi-flat ones which are not LCR-structures. Some example of the existence of each kind of CR-structures are given in the Appendix.

Example 1 Let us consider the complex three-dimensional linear space \mathbb{C}^3 . Let X_1, X_2 be two vectors such that $\tau X_1 \neq \pm X_1, X_2 = -\tau X_2$ and let $(X_1, \tau X_1, X_2)$ be a basis of \mathbb{C}^3 . If we define

$$[X_1, X_2] = 0$$

 $[X_1, \tau X_1] = X_2$

 $g = (C^3, [,])$ is a solvable Lie-algebra. Taken $q_1 \doteq CX_1$, we have that $q_1 \cap \overline{q}_1 = \{0\}$ and $[q_1, \overline{q}_1] = CX_2$. So, q_1 is a CR-structure which is not Levi-flat.

CR-structures. 15

Example 2 Let g_0 be a real semisimple Lie-algebra and h_0 be an its Cartan subalgebra. Then, g and h are their complexifications. Since h is abelian, any nonvanishing subspace q of h such that $q \cap \overline{q} = \{0\}$ defines a Levi-flat CR-structure on g_0 and a LCR-structure on h_0 . Moreover q can not be an ideal of g. So it is not a LCR-structure.

Let us conclude this Section with two results about the algebraic properties of \mathbf{p} . Thus, we give the "real" definitions of Levi-flat and Lie's CR-structure. In the sequel we denote with $\mathbf{u} = \bigoplus_{j=1}^r \mathbf{R} X_j$ and \mathbf{p} the real part of \mathbf{v} and \mathbf{q} , respectively. We shall write $\tilde{\mathbf{q}}$ for the direct sum $\mathbf{q} \oplus \overline{\mathbf{q}}$. As we have already remarked (Proposition 1.2.4), we have the decompositions $\mathbf{g}_0 = \mathbf{p} \oplus \mathbf{u}$ and $\mathbf{g} = \tilde{\mathbf{q}} \oplus \mathbf{v}$.

Proposition 1.2.8 The linear subspace p is a real subalgebra if and only if \tilde{q} is a complex one. This means that a CR-structure is Levi-flat if and only if p is a real subalgebra.

Let us give the proof. In particular, we shall show that $[\mathbf{p}, \mathbf{p}]$ is included in \mathbf{p} if and only if $[\mathbf{q}, \overline{\mathbf{q}}]$ is contained in $\mathbf{q} \oplus \overline{\mathbf{q}}$. If \mathbf{p} is a subalgebra, consider X, Y in \mathbf{p} , and the elements

$$[X - iJX, Y + iJY] = [X, Y] + [JX, JY] + i([X, JY] - [JX, Y])$$

$$2Z \doteq [X,Y] + [JX,JY] + J([X,JY] - [JX,Y])$$

$$2W \doteq [X, Y] + [JX, JY] - J([X, JY] - [JX, Y]).$$

Trivially it is $Z, W \in \mathbf{p}$ and $[X - iJX, Y + iJY] = Z + W + iJ(W - Z) \in \mathbf{q} \oplus \overline{\mathbf{q}}$.

Vice versa if there are $Z, W \in \mathbf{p}$ such that [X - iJX, Y + iJY] = Z + iJW, then $[X,Y] + [JX,JY] = Z \in \mathbf{p}$. Since, by definition, $[X,Y] - [JX,JY] \in \mathbf{p}$, it follows that [X,Y] is in \mathbf{p} .

An analogous result follows about LCR-structures.

Proposition 1.2.9 A CR-structure \mathbf{q} is a LCR-structure if and only if \mathbf{p} is a real ideal and J is ad_X -invariant. Obviously, a LCR-structure is Levi-flat.

Remark 1.2.10 Of course, even in this case, the more geometrical definitions are those given in the real terms. That is, the CR-structure (p, J) is Levi-flat, whenever p is a real subalgebra; it is a LCR-structure, whenever p is a real ideal and J is invariant under all the adjoint derivations ad_X . The complex definitions have been introduced, since they have an easier application in the direct computations.

1.3 Sub-CR-algebras.

In the family of all the real subalgebras h_0 , we are interested in those on which (\mathbf{p}, J) induces a CR-structure. Let \mathbf{h} denote the complexification

CR-structures. 17

of h_0 . In the general case, the subalgebras $h \cap q$ and $h \cap \overline{q}$ are not conjugated. Moreover, they may have not the same dimension. So we give the following

Definition 1.3.1 The complex subalgebra h is a sub-CR-algebra if it is τ -stable and it admits the CR-structure $h \cap q$ induced by q. When $h \cap q$ is a Levi-flat CR-structure, h is said a Levi-flat sub-CR-algebra. When $h \cap q$ is a LCR-structure, h is said a Lie-sub-CR-algebra. Let h be an ideal. Then we speak, respectively, of a CR-ideal, a Levi-flat CR-ideal and a CR-ideal of Lie. Moreover, in the case that q is a LCR-structure, h is said a sub-LCR-algebra or a LCR-ideal. When h is a sub-CR-algebra and $h \cap q$ vanishes, h is said trivial. If $\mathcal{D}h \cap q$ vanishes. h is said CR-abelian.

Example 3 Let g be the Lie-algebra of real $2n \times 2n$ -matrices, gl(2n) and p be the subspace of diagonal ones. When A is in p, define the CR-structure J as

$$(JA)_i = -A_{n+i}$$
 and $(JA)_{n+i} = A_i$, where $i \le n$.

Consider, now, the ideal sl(2n) whose elements have trace vanishing. Such an ideal is not a CR-ideal. In fact, there are elements of $p \cap sl(2n)$ whose image via J has not null trace: $J\begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix} = I_{2n}$. Examples of sub-CR-algebra are provided by the space of upper triangular matrices and by $sl(n) \oplus sl(n)$.

Proposition 1.3.2 The subalgebra h is a nontrivial sub-CR-algebra if and only if $\tau(h \cap q) = h \cap \overline{q} \neq \{0\}$. The same result is true in all the other cases.

Of course, the complex definition 1.3.1 means that $(\mathbf{h}_0 \cap \mathbf{p}, J_{\mathbf{h}_0 \cap \mathbf{p}})$ is a CR-structure on \mathbf{h}_0 . The equivalence between these facts is given by the

Proposition 1.3.3 The restriction of J to $h_0 \cap p$ is an integrable complex structure. Vice versa, if J is an integrable complex structure on $h_0 \cap p$, $h \cap q$ is a sub-CR-algebra.

Corollary 1.3.4 The intersection $h \cap q$ vanishes if and only if $h_0 \cap p$ vanishes.

Proof: the above Proposition may be written as

$$h \cap q = \{0\} \Leftrightarrow \begin{cases} h_0 \cap p = \{0\} \\ h_0 \cap p \neq \{0\} \end{cases}$$
 J does not map $h_0 \cap p$ in itself

Let us prove that the second case can not occur. Take the subalgebra $h'_0 \doteq h_0 \cap p + J(h_0 \cap p)$. Then h'_0 is invariant under J and intersects p . Thus, its complexified h' intersects q and it is contained in h : a contradiction.

Hence, the sub-CR-algebras h_0 are characterised by the condition

$$J(h_0 \cap p) \subseteq h_0 \cap p \neq \{0\}.$$

Let us return to the complex situation. Since τ is a real Lie-isomorphism, when h is τ -stable its derived and its central series are composed by τ -stable elements. Moreover, there is the

CR-structures.

Proposition 1.3.5 Let h be a sub-CR-algebra. Then either h is CR-abelian or \mathcal{D} h is a sub-CR-algebra.

Proof: $\tau(\mathcal{D}\mathbf{h} \cap \mathbf{q}) = \mathcal{D}\overline{\mathbf{h}} \cap \overline{\mathbf{q}} = \mathcal{D}\mathbf{h} \cap \overline{\mathbf{q}}$. A similar result is true even for $\mathcal{D}^k\mathbf{h}$ and $\mathcal{C}^k\mathbf{h}$.

Theorem 1.3.6 Let h be a CR-ideal of g which does not contain q, then $q/h \cap q$ is a CR-structure of g/h. Hence g/h is a CR-algebra, said the CR-quotient.

Proof: since $\mathbf{q} \cap \mathbf{h}$ is an ideal of \mathbf{q} , $\mathbf{q}/\mathbf{q} \cap \mathbf{h}$ is a Lie-subalgebra of \mathbf{g}/\mathbf{h} . On \mathbf{g}/\mathbf{h} consider the conjugation τ defined as $\tau[X] = \overline{X} + \overline{\mathbf{h}} = \overline{X} + \mathbf{h} = [\overline{X}]$. Take a real element $[Q] = [\overline{Q}]$ of $(\mathbf{q}/\mathbf{q} \cap \mathbf{h}) \cap (\overline{\mathbf{q}}/\overline{\mathbf{q}} \cap \mathbf{h})$. By definition, there is $H \in \mathbf{h}$ such that $Q + H = \overline{Q}$: then it is $Q - \overline{Q} \in \mathbf{h} \cap (\mathbf{q} \oplus \overline{\mathbf{q}})$. Since, $\mathbf{h} = \mathbf{h} \cap \mathbf{q} \oplus \mathbf{h} \cap \overline{\mathbf{q}} \oplus \mathbf{h}_1$, $\mathbf{h} \cap \mathbf{q} \oplus \mathbf{h} \cap \overline{\mathbf{q}} = \mathbf{h} \cap (\mathbf{q} \oplus \overline{\mathbf{q}})$. So, $Q \in \mathbf{h} \cap \mathbf{q}$, and hence [Q] vanishes.

The Lie-homomorphisms which send a CR-structure in another one, are said *CR-homomorphisms*. More precisely,

Definition 1.3.7 Consider two CR-algebras g and g'. A Lie-homomorphism (resp. a derivation) $\alpha : g \to g'$ is said a CR-homomorphism (resp. a CR-derivation) if α intertwines τ and τ' and it maps q in q'. The set of all the CR-homomorphisms is denoted with $Hom^*(g, g')$.

The restriction of α to the linear subspace \mathbf{p} defines an homomorphism $\alpha: \mathbf{p} \to \mathbf{p}'$ which intertwines J and J'. Vice versa, an homomorphism $\alpha: \mathbf{g}_0 \to \mathbf{g}_0'$ which maps \mathbf{p} into \mathbf{p}' and intertwines J and J', defines a CR-homomorphism.

Example 4 Let us return to Example 3, consider the matrix e_{ij} whose entries are $\delta_{ik}\delta_{jh}$, which has 1 in position (i,j) and 0 elsewhere. Define the real subspaces $E_1 = \bigoplus_{i \leq n} \mathbf{R}e_{ii}$ and $E_2 = \bigoplus_{i \geq n} \mathbf{R}e_{ii}$. The CR-homomorphisms are the Liehomomorphisms which let both E_1 and E_2 invariant.

Proposition 1.3.8 Let α be an element of $Hom^*(\mathbf{g}, \mathbf{g}')$, then $Im\alpha$ is a sub-CR-algebra of \mathbf{g}' and $\ker \alpha$ is a CR-ideal of \mathbf{g} (when $\alpha|_{\mathbf{q}}$ is not invertible). Moreover, $\alpha \mathbf{q}$ is a CR-structure of $\alpha \mathbf{g}$.

Whenever, α is an isomorphism, then the two CR-algebras are said to be CR-isomorphic and the corresponding CR-structures are said to be equivalent.

1.4 Semidirect sums of CR-structures.

Take two Lie-algebras \mathbf{g}_0 and \mathbf{g}'_0 , and consider the CR-structures (\mathbf{p}, J) on \mathbf{g}_0 and (\mathbf{p}', J') on \mathbf{g}'_0 . If δ is a Lie-homomorphism between \mathbf{g}_0 and $Der(\mathbf{g}'_0)$, a classical construction gives the semidirect sum of \mathbf{g}'_0 and \mathbf{g}_0 by δ . Since the direct sum $\mathbf{g}'_0 \oplus_{\delta} \mathbf{g}_0$ is defined on the linear space $\mathbf{g}'_0 \oplus \mathbf{g}_0$, we would like to know when the pair $(\mathbf{p}_{\oplus} = \mathbf{p}' \oplus \mathbf{p}, J_{\oplus} = J' \oplus J)$ is a CR-structure, too. In this case, it is called the semidirect sum of the CR-structures (\mathbf{p}, J) and (\mathbf{p}, J') . A direct computation proves the

Proposition 1.4.1 The pair $(\mathbf{p}_{\oplus}, J_{\oplus})$ is a CR-structure on $\mathbf{g}'_0 \oplus_{\delta} \mathbf{g}_0$ if and only if $D_J(X) \doteq \delta(JX) + \delta(X)J'$ is a CR-linear map, for all X in \mathbf{p} .

21

Corollary 1.4.2 When (\mathbf{p}, J) is a CR-structure on \mathbf{g}_0 , $(\{0\} \oplus_{\delta} \mathbf{p}, J)$ is a CR-structure, for all \mathbf{g}'_0 and for all δ .

Remind that when g'_0 is semisimple, any derivation is inner. So every $\delta: g_0 \to Der(g'_0)$ takes the form δ_B , for a suitable $B \in Hom(g_0, g'_0)$. If g_0 and g'_0 are endowed with CR-structures and B is a CR-homomorphism, the corresponding semidirect sum supports as CR-structure the semidirect sum of the two CR-structures.

Proposition 1.4.3 Let g_0' be a semisimple Lie-algebra, then the pair (p_{\oplus}, J_{\oplus}) is a CR-structure of any $g_0' \oplus_{\delta_B} g_0$, with $B \in Hom^*(g_0, g_0')$: where $\delta_B(X) \doteq ad_{BX}$.

In the general case, notice that $(\mathbf{p}_{\oplus}, J_{\oplus})$ is a Levi-flat CR-structure if and only if [(U, X), (V, Y)] + [J(U, X), J((V, Y)] is in \mathbf{p}_{\oplus} , with U, V in \mathbf{p}' and X, Y in \mathbf{p} . This fact implies that (\mathbf{p}', J') and (\mathbf{p}, J) have to be Levi-flat CR-structures and that $\delta(X) + \delta(JX)J' \in \mathbf{gl}^*(\mathbf{p})$.

By Proposition 1.4.1, $D_J(JX) = \delta(JX)J' - \delta(X)$ is an element of $gl^*(p')$. So the further condition implies that the homomorphism δ maps p in $gl^*(p')$. Let us summarise the result in the following

Proposition 1.4.4 The pair $(\mathbf{p}_{\oplus}, J_{\oplus})$ is a Levi-flat CR-structure on $\mathbf{g}'_0 \oplus_{\delta} \mathbf{g}_0$ if and only if

- 1. (p', J') is a Levi-flat CR-structure on g'_0 ;
- 2. (\mathbf{p}, J) is a Levi-flat CR-structure of \mathbf{g}_0 ;
- $\beta. \ \delta(\mathbf{p}) \subseteq \mathbf{gl}^*(\mathbf{p}'). \blacksquare$

Via an analogous computation, it is possible to prove the

Proposition 1.4.5 The pair $(\mathbf{p}_{\oplus}, J_{\oplus})$ is a LCR-structure if and only if

- 1. (p', J') is a LCR-structure on g'_0 ;
- 2. (\mathbf{p}, J) is a LCR-structure on \mathbf{g}_0 ;
- 3. $\delta(JX) = J'\delta(X), \forall X \in \mathbf{p};$
- 4. $\delta(X)J' = J'\delta(X), \forall X \in \mathbf{g}_0;$
- 5. $\delta(X)\mathbf{p}' \subseteq \mathbf{p}', \forall X \in \mathbf{g}_0$:
- 6. $\delta(X)g_0' \subseteq p', \forall X \in p$.

Let us consider a different case involving semidirect sums. Suppose that nor \mathbf{g}_0 neither \mathbf{g}_0' supports a CR-structure. Even in this case, it is possible that $\mathbf{g}_0' \oplus_{\delta} \mathbf{g}_0$ is endowed with a CR-structure. In fact, consider a subalgebra \mathbf{p} in \mathbf{g}_0 and an abelian one \mathbf{p}' in \mathbf{g}_0' . Let $E: \mathbf{p} \to \mathbf{p}'$ be a linear isomorphism such that $E[X,Y] = \delta(X)EY - \delta(Y)EX$, for all $X,Y \in \mathbf{p}$. Then, the pair $(\mathbf{p}_{\oplus} = \mathbf{p}' \oplus \mathbf{p}, J_E = \begin{pmatrix} 0 & E \\ -E^{-1} & 0 \end{pmatrix})$ is a CR-structure. The further condition $\delta(V)EX - \delta(Y)EU \in \mathbf{p}'$ characterises the Levi-flat CR-structures (\mathbf{p},J_E) . Finally, when \mathbf{p}' and \mathbf{p} are ideals and $\delta(G)EX - \delta(Y)EH \in \mathbf{p}'$, $(\mathbf{p}_{\oplus},J_E)$ is a LCR-structure.

If we focus our mind on LCR-structures, Proposition 1.4.5 assures that, if \mathbf{g}'_0 is endowed with a complex structure and if $\delta(X)$ is holomorphic, $\mathbf{g}'_0 \oplus_{\delta} \mathbf{g}_0$ supports a LCR-structure, where \mathbf{g}_0 is a generic real Liealgebra. That will be the case of noncompact semisimple Lie-algebras where \mathbf{g}_0 is the sum of the real factors and \mathbf{g}'_0 is the sum of the Cartan-classified ones, cf. Chapter 2, Section 2. Another example is given by a reductive Lie-algebra. In fact, in that case the algebra is the direct sum

of its centre and of a semisimple Lie-subalgebra. So, a LCR-structure is direct sum of an abelian LCR-structure with a semisimple one. Such a situation is a particular case of Levi-Mal'cev decomposition. Such a decomposition will be the object of the following Chapter.

Let us describe the particular case of a reductive Lie-algebra \mathbf{g}_0 . Such an algebra is given by the direct sum of its centre and of its derived (which is semisimple): $\mathbf{g}_0 = \zeta(\mathbf{g}_0) \odot \mathcal{D} \mathbf{g}_0$.

In the following, such a decomposition will take a central position. In fact, we look only for the CR-structures splitted as $(\mathbf{p} = \mathbf{p_a} \oplus \mathbf{p_s} J = \begin{pmatrix} J_\mathbf{a} & E \\ F & J_\mathbf{s} \end{pmatrix})$. This choice is, in general, restrictive. While, if we consider just the LCR-structures. it is not. In fact, let \mathbf{p} be an ideal of $\mathbf{g_0}$. Hence, $\mathbf{p_a} = \mathbf{p} \cap \zeta(\mathbf{g_0})$ is its radical. Take an its Levi-subalgebra $\mathbf{p_s}$. Since $\mathbf{p_s}$ is a semisimple subalgebra, it is included in the Levi-subalgebra $\mathcal{D}\mathbf{g_0}$. Thus, \mathbf{p} takes the desired form.

Now, take a subspace $\mathbf{p} = \mathbf{p_a} \oplus \mathbf{p_s}$. Then, impose that $J = \begin{pmatrix} J_\mathbf{a} & E \\ F & J_\mathbf{s} \end{pmatrix}$ is an integrable complex structure on it. By definition, the following relations have to be satisfied

By a direct computation, it is possible to show that the following relations have to be verified:

$$1. J_{\mathbf{a}}^2 + EF = -id_{\mathbf{pa}}$$

2.
$$J_{\rm s}^2 + FE = -id_{\rm ps}$$

$$3. J_{\mathbf{a}}E + EJ_{\mathbf{s}} = 0$$

$$4. J_{\mathbf{s}}F + FJ_{\mathbf{a}} = 0$$

5.
$$[ImF, ImF] = 0$$

6.
$$[X, Y] - [J_s X, J_s Y] \in p_s$$

7.
$$[J_sX, J_sY] = [X, Y] + J_s[J_sX, Y] + J_s[X, J_sY]$$

- 8. $[ImF, p_s] \in KerE$
- 9. $E[J_{s}X, J_{s}Y] = E[X, Y]$
- 10. $ad_{FA}J_s = J_s ad_{FA}$.

Corollary 1.4.6 Any reductive Lie-algebra is endowed with a CR--structure.

Proof: consider, in fact, an abelian subalgebra $\mathbf{p_s}$, whose dimension is less or equal to $\dim \zeta(\mathbf{g_0})$ (such a subalgebra exists. In fact, any linear subspace of the Cartan subalgebra \mathbf{h} of \mathbf{s} is abelian); and a linear monomorphism $E: \mathbf{p_s} \to \zeta(\mathbf{g_0})$. Then, the pair $(\mathbf{p} = E\mathbf{p_s} \oplus \mathbf{p_s}, J_E = \begin{pmatrix} 0 & E \\ -E^{-1} & 0 \end{pmatrix})$ is a CR-structure on $\mathbf{g_0}$. In particular, since \mathbf{p} is abelian, (\mathbf{p}, J_E) is Levi-flat. Obviously, (\mathbf{p}, J_E) can not be a Lie's one, otherwise $\mathbf{p_s}$ would be an abelian ideal of \mathbf{s} . Such a construction provides a "large" family of Levi-flat CR-structures which are not Lie's.

The ten relations provide other interesting families of splitted CR-structures on a reductive Lie-algebra. Suppose that $(\mathbf{p_a}, J_\mathbf{a})$ and $(\mathbf{p_s}, J_\mathbf{s})$ are CR-structures on $\zeta(\mathbf{g_0})$ and $\mathcal{D}\mathbf{g_0}$, respectively. Then

- i) the direct sum $(\mathbf{p} = \mathbf{p_a} \oplus \mathbf{p_s}, J_{\mathbf{a}} \oplus J_{\mathbf{s}})$ is a CR-structure on $\mathbf{g_0}$;
- ii) whenever $E: \mathbf{p_s} \to \mathbf{p_a}$ satisfies

$$J_{\mathbf{a}}E + EJ_{\mathbf{s}} = 0$$

$$E[J_{\mathbf{s}}X, J_{\mathbf{s}}Y] = E[X, Y],$$

the pair $(\mathbf{p}, J = \begin{pmatrix} J_{\mathbf{a}} & E \\ 0 & J_{\mathbf{s}} \end{pmatrix}$ defines a CR-structure on \mathbf{g}_0 ;

iii) whenever $F: \mathbf{p_a} \to \mathbf{p_s}$ satisfies $J_\mathbf{s}F + FJ_\mathbf{a} = 0$ and $ad_{FX}J_\mathbf{s} = J_\mathbf{s}ad_{FX}$, $\forall X \in \mathbf{p_a}$, $(\mathbf{p}, J = \begin{pmatrix} J_\mathbf{a} & 0 \\ F & J_\mathbf{s} \end{pmatrix}$ is a CR-structure.

In Chapter 2, we shall show that the only LCR-structures of a reductive Lie-algebra take the form $(\mathbf{p}_{\oplus} = \mathbf{p}_{\mathbf{a}} \oplus \mathbf{p}_{\mathbf{s}}, J_{\oplus} = J_{\mathbf{a}} \oplus J_{\mathbf{s}}).$

In conclusion, let us observe that even the Levi-flat CR-structures are given on splitted spaces.

Proposition 1.4.7 A real subalgebra p of a reductive Lie-algebra go is reductive.

Proof: remind that a Lie-algebra is reductive if and only if its adjoint representation is semisimple. Then, take X in \mathbf{p} and an ad_X -invariant subspace V of \mathbf{p} . Since \mathbf{g}_0 is reductive, there exists an ad_X -invariant subspace W of \mathbf{g}_0 such that $\mathbf{g}_0 = V \oplus W$. Let π_W be the projection on W defined by the given decomposition. Since V is included in \mathbf{p} , $\pi_W \mathbf{p}$ is contained in \mathbf{p} and it coincides with $\mathbf{p} \cap W$. Obviously, $\mathbf{p} = V \oplus \mathbf{p} \cap W$ and $\mathbf{p} \cap W$ is invariant under ad_X .

Corollary 1.4.8 Whenever p is a subalgebra, p is decomposed as $p = \zeta(p) \odot \mathcal{D}p$. Notice that $\mathcal{D}p$ is included in $\mathcal{D}g_0$ while $\zeta(p)$ is not necessary in $\zeta(g_0)$.

In any case, a Levi-flat CR-structure satisfies the above ten equations.

1.5 Appendix.

We study three examples of Lie-algebras of low dimension. On each of them, all the CR-structures are studied. They are interesting because they furnish examples of CR-structures which are not Levi-flat; and of Levi-flat CR-structures which are not Lie's.

Example 5 Let S^3 be the three-dimensional sphere. It is a compact Lie-group, whose Lie-algebra is $\operatorname{su}(2) = \{A \in \operatorname{gl}(2, \mathbb{C}) : trA = 0, A^t + \overline{A} = 0\}$. The generic element of $\operatorname{su}(2)$ is $\begin{pmatrix} ix & u+iv \\ -u+iv & -ix \end{pmatrix}$. Hence, a basis is given by $E_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Furthermore, the Lie-product is defined by

$$[E_1, E_2] = -2E_3$$

 $[E_1, E_3] = 2E_2$
 $[E_2, E_3] = -2E_1$.

First of all, remark that the centre of su(2) vanishes. Hence, since it is compact, it is simple. Then, su(2) has no ideals, and, hence, no LCR-structures.

Remind, now, that a CR-structure is given on an even-dimensional subspace \mathbf{p} . So, we study the planes $\mathbf{p} \subseteq \mathbf{su}(2)$. In the case that \mathbf{p} is a subalgebra, or it is abelian either it is solvable. Since the product of two vectors is given by

$$[X,Y] = 2(X^3Y^2 - X^2Y^3)E_1 + 2(X^1Y^3 - X^3Y^1)E_2 + 2(X^2Y^1 - X^1Y^2)E_3,$$

it vanishes if and only if they are linearly dependents. This means that there are no abelian planes.

Consider now a solvable bidimensional subalgebra p. It is possible to find two vectors $X, Y \in p$ such that

1.
$$p = RX \oplus RY$$

$$2. [X, Y] = Y.$$

The second relation implies that

$$(Y^2)^2 + (Y^3)^2 = -(Y^1)^2,$$

where the Y^i 's are the components of Y with respect of E_i . Obviously. the only solution is Y=0. Hence, there are nor bidimensional subalgebras, neither Levi-flat CR-structures. Otherwise, any plane $\mathbf{p}=\mathbf{R}X\oplus\mathbf{R}Y$ admits the complex structure $JX\doteq Y$, $JY\doteq -X$.

In conclusion, the Lie-algebra su(2) has no bidimensional subalgebras. Thus, the sphere S^3 does not admit Levi-flat CR-structure.

Example 6 Consider the matrices $E_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and the space $g_0 = \bigoplus_i \mathbf{R}E_i$. Since,

$$[E_1, E_2] = -2E_3$$

$$[E_1, E_3] = 2E_2$$

$$[E_2, E_3] = 2E_1,$$

 \mathbf{g}_0 is a real Lie-algebra, whose centre vanishes. Let us write the Lie-product of two vectors X and Y

$$[X,Y] = 2(X^2Y^3 - X^3Y^2)E_1 + 2(X^1Y^3 - X^3Y^1)E_2 + 2(X^2Y^1 - X^1Y^2)E_3.$$

The following system defines the eigenvectors of ad_X :

$$\begin{cases} X^{2}Y^{3} - X^{3}Y^{2} = \lambda Y^{1} \\ X^{1}Y^{3} - X^{3}Y^{1} = \lambda Y^{2} \\ X^{2}Y^{1} - X^{1}Y^{2} = \lambda Y^{3} \end{cases}$$

Since one of the Y^i 's does not vanishes, let us pose $Y^1 = 1$. Then, the system becomes

$$\begin{cases} Y^{3}X^{2} - Y^{2}X^{3} = \lambda \\ X^{3} = Y^{3}X^{1} - \lambda Y^{2} \\ X^{2} = X^{1}Y^{2} + \lambda Y^{3} \end{cases}$$

so
$$Y^2 = \cos \alpha$$
, $Y^3 = \sin \alpha$, $Y = (1, \cos \alpha, \sin \alpha)$

Let us write the second and the third equations as

$$\begin{cases} Y^2 = \frac{X^1 X^2 - \lambda X^3}{(X^1)^2 + \lambda^2} \\ Y^3 = \frac{X^1 X^3 + \lambda X^2}{(X^1)^2 + \lambda^2} \end{cases}$$

this means that, when λ is a nonvanishing eigenvalue, λ is a zero of

$$(X^{1}X^{3} + \lambda X^{2})^{2} + (X^{1}X^{2} - \lambda X^{3})^{2} = ((X^{1})^{2} + \lambda^{2})^{2},$$

and then of

$$\lambda^2 = (X^2)^2 + (X^3)^2 - (X^1)^2.$$

So, $tr(ad_X)$ vanishes, for all $X \in g_0$, and g_0 is said unimodular. A classical result about unimodular three-dimensional algebras says that

the Killing form is given by $B(X,Y) = -8(X^1Y^1 - X^2Y^2 - X^3Y^3)$, cf. the Appendix to Chapter 2. Hence, g_0 is simple. In particular, it does not admit LCR-structures and it is isomorphic to sl(2,R).

Since a CR-structure of g_0 is supported by a plane, let us study the planes and the bidimensional subalgebras. When $p = RX \oplus RY$ is a subalgebra, p has to be solvable. In fact, X and Y commutes if and only if they are linear dependents. Let us consider X and Y in p such that [X,Y]=Y. Imposing this condition, we obtain the linearly independents vectors

$$Y_{\alpha} = (1, \cos \alpha, \sin \alpha)$$

$$X_{a,\alpha} = (a, \sin \alpha + a \cos \alpha, a \sin \alpha - \cos \alpha).$$

Then, $\forall a, \alpha \in \mathbf{R}$, $\mathbf{p}_{a,\alpha} = \mathbf{R}Y_{\alpha} \oplus \mathbf{R}X_{a,\alpha}$ is a solvable subalgebra. Its endomorphism $J_{a,\alpha}$, which sends Y_{α} in $X_{a,\alpha}$ and $X_{a,\alpha}$ in Y_{α} , defines a Levi-flat CR-structure on \mathbf{g}_0 .

Remind that $\mathbf{p}_{a,\alpha}$ does not depend on a. In fact, we may write $X_{b,\alpha}$ as $X_{a,\alpha} + (b-a)Y_{\alpha}$.

Finally, observe that the generic CR-structures are more than the Levi-flat ones. In fact, the vectors Y_{α} belong to the cone Γ of equation $X^1 = (X^2)^2 + (X^3)^2$, while the vectors $X_{a,\alpha}$ are on the hyperboloid H of equation $(X^1)^2 + 1 = (X^2)^2 + (X^3)^2$. A plane, which does not intersect the above cone, supports a CR-structure but it is not a subalgebra.

So, g_0 has no LCR-structure. Any its plane defines a CR-structure. While the Levi-flat ones are generated by a suitable

pair of vectors taken in Γ and in H.

Example 7 Consider the real linear space g₀ of complex matrices

$$\begin{pmatrix}
0 & z & w \\
0 & 0 & \overline{z} \\
0 & 0 & 0
\end{pmatrix},$$

and the matrices e_{ij} which have 1 in the position (i,j) and 0 elsewhere. A basis of g_0 is given by $E_1 = e_{12} + e_{23}$, $E_2 = i(e_{12} - e_{23})$, $E_3 = e_{13}$, $E_4 = ie_{13}$. A trivial computation shows that the only noncommuting matrices are E_1 and E_2 , whose product is

$$[E_1, E_2] = -2E_4.$$

Hence, $\mathcal{D}g_0 = \mathbf{R}E_4$ and $\mathcal{D}^2g_0 = 0$. So, g_0 is a solvable Lie-algebra. By definition, the vector E_4 stays in all the subalgebras with dimension greater than 2. Moreover, $p_X \doteq \mathbf{R}X \oplus \mathbf{R}E_4$ is the generic bidimensional ideal. So, we may conclude that the Levi-flat CR-structures of g_0 are LCR-structures and are given by (\mathbf{p}_X, J_X) , where $J_X X = E_4$ and $J_X E_4 = -X$.

In conclusion, the Levi-flat CR-structures are defined by the planes containing E_4 . Each of them is a LCR-structure.

LCR-structures.

2.1 Introduction to Chapter 2.

In [SN], the author studies the left-invariant complex structures on reductive Lie-algebras. He considers a real reductive Lie-algebra g_0 endowed with an invariant complex structure. Hence, the complexification of g_0 , $g = g_0 \otimes_R C$, may be decomposed as $g = q \oplus \overline{q}$, where q is a complex subalgebra. Snow studies the regular complex structures, where regular means that there exists a Cartan subalgebra h of g such that $h = \overline{h}$ and $[h,q] \subseteq q$.

A regular q can be written as

$$q=q\cap h\oplus \oplus_{\alpha\in\Pi}g^{\alpha},$$

where Π is a suitable subset of the root set Δ . Finally, Snow shows that every complex structure is regular, when it is given on a reductive Lie-algebra of the first category. Remind that in these algebras the involution determined by a Cartan decomposition is an inner automorphism. Such results have been translated by [GT] in terms of

CR-structures on reductive Lie-algebras of the first category: the authors study the case of real codimension 1. With this further hypothesis, they prove that there exists a compact Cartan subalgebra h_0 of g_0 on which the CR-structure q induces a CR-structure. Moreover, they find a subset $\Delta^+ \subseteq \Delta$ which determines a decomposition similar to the Snow's one. Two cases are possible: either $q = q \cap h \oplus \bigoplus_{\alpha>0} g^{\alpha}$, or $\mathbf{q} = \mathbf{q} \cap \mathbf{h} \oplus \bigoplus_{\alpha > 0, \alpha \neq \mu} \mathbf{g}^{\alpha} \oplus \mathbf{C}(H + X^{\mu}), \text{ where } H = \overline{H} \in \mathbf{h}.$ In this Chapter we explore and classify all the LCR-structures on a Lie-algebra. With respect of [GT] we study a case in which the Lie-algebra is more generic (in fact, it has not to be reductive of the first category), while the CR-structure is more particular, since it is a Lie's one. Moreover, our approach does not use Cartan subalgebras and their corresponding root spaces. Chapter 4 will be devoted to this point of view. In the present Chapter, we consider the Levi-Mal'cev decomposition. Thus, we have to study LCR-structures in the semisimple and in the solvable cases (Sections 2.2 and 2.3): in the first one the LCR-structures are sums (in the sense of Proposition 2.2.5) of simple ideals endowed with a complex structure (described by Cartan in the classical classification, [HE]); in the second one they are given on even-dimensional ideals p. decomposed as $\mathbf{p} = \mathbf{u} \oplus A\mathbf{u}$, by the endomorphism $J_A \doteq \begin{pmatrix} 0 & A \\ -A^{-1} & 0 \end{pmatrix}$. Finally, Section 2.4 concludes with Theorem 2.4.3: let g₀ be decomposed following Levi-Mal'cev decomposition; then (\mathbf{p}, J) is a LCRstructure if and only if its factors are LCR-structures whose semidirect sum by ad is (\mathbf{p}, J) itself. Obviously this result describes all the LCRstructures. The only indetermination is due to the knowledge of the

ideals of solvable Lie-algebras.

Hence, in Section 2.5 the problem of the existence of Levi-flat CR-structure is solved; and their description is given in the terms of a new Lie-product Γ on \mathbf{p} .

2.2 Semisimple LCR-structures.

In this Section we denote by g_0 a real Lie-algebra and by B its Killing form. The existence and the description of semisimple LCR-structures depend on the compactness of the Lie-algebra. Thus, we study, separately, the compact and the noncompact case. Remind that a Lie-algebra g_0 is compact if there exists a compact Lie-group whose Lie-algebra is g_0 . That is equivalent to giving the decomposition $g_0 = \zeta(g_0) \odot [g_0, g_0]$, where $\zeta(g_0)$ is the center of g_0 and $[g_0, g_0]$ is semisimple and compact.

It is a classical fact that the existence of a complex structure on a compact Lie-algebra implies the abelianity of the algebra itself. Moreover, a CR-structure (\mathbf{p}, J) such that \mathbf{p} is in the center of \mathbf{g}_0 , is trivially a LCR-structure, so we can hopefully expect a CR analogous of the complex result. Such an analogous result is based on the

Lemma 2.2.1 Given a LCR-structure (p, J) on g_0 , p admits a biinvariant metric if and only if p is abelian.

Proof: a metric g is biinvariant, whenever

$$g([X, Y], Z) = g(X, [Y, Z]),$$

for all X, Y, Z in g_0 . Let p be abelian, then any metric is, certainly, biinvariant. In order to prove the converse, we can impose that J is an isometry with respect to g (otherwise we substitute g with $g'(X, Y) \doteq g(X, Y) + g(JX, JY)$). With this hypothesis the following chain of equivalences is true, for any X, Y, Z in p

$$g([X,Y],Z) = g(J[X,Y],JZ) = g([X,JY],JZ) =$$

 $g(X,[JY,JZ]) = -g(X,[Y,Z]) = -g([X,Y],Z),$

therefore g([X,Y],Z) vanishes.

Since any compact Lie-algebra admits a biinvariant metric, we have the

Proposition 2.2.2 Let g_0 be a compact Lie-algebra, (p, J) is a LCR-structure on g_0 if and only if p is abelian. Moreover, the same result is true when the only p is compact.

The previous proposition permits us to describe the compact case with the

Theorem 2.2.3 There are no LCR-structures on a compact semisimple Lie-algebra. Furthermore, when g_0 is a compact Lie-algebra, (p, J) is a LCR-structure on g_0 if and only if p is included in the center $\zeta(g_0)$. LCR-structures 35

Proof: the non-existence of abelian ideals in a semisimple Lie-algebra concludes the first part of the assertion. About the second one. suppose that a compact Lie-algebra g_0 supports a LCR-structure (p, J). then p takes the form $p_1 \oplus p_2$ where p_2 is an ideal of the Levi-subalgebra $\mathcal{D}g_0$ and $p_1 = p \cap \zeta(g_0)$ is the radical of p. In the case that J maps p_2 in itself, then $(p_2, J|_{p_2})$ would be a LCR-structure of $[g_0, g_0]$, that is impossible. Hence, p coincides with p_1 and stays in $\zeta(g_0)$. Let us conclude proving that J maps, really, p_2 in itself. Consider

Let us conclude proving that J maps, really, \mathbf{p}_2 in itself. Consider the complex subalgebras $\mathbf{q}_j \doteq \{X - iJX : X \in \mathbf{p}_j\}$. Obviously it is $\mathbf{q} = \mathbf{q}_1 \oplus \mathbf{q}_2$ and \mathbf{q}_2 is another LCR-structure of \mathbf{g} . Hence, it is given the endomorphism $J_2 : \mathbf{p}_2 \to \mathbf{p}_2$. Take $X \in \mathbf{p}_2$, then X - iJX is in \mathbf{q} , and $X - iJ_2X$ is in \mathbf{q}_2 . With a direct computation, we show that $i(J_2X - JX) = (X - iJX) - (X - iJ_2X) = (X + iJ_2X) - (X + iJX) \in \mathbf{q} \cap \overline{\mathbf{q}} = \{0\}$, which means that J maps \mathbf{p}_2 in itself.

Now we move to the study of LCR-structures on semisimple noncompact Lie-algebras. The simple case is trivial. In fact, since there are no nontrivial ideals, a LCR-structure on a simple Lie-algebra is. really. an ad-invariant complex one, if it exists. Moreover, it is well known that a semisimple Lie-algebra is direct sum of simple ideals. These facts bring us to the

Proposition 2.2.4 A LCR-structure on a semisimple Lie-algebra is completely defined by its simple ideals endowed with a complex structure. Moreover, the same result is true whenever \mathbf{g}_0 is a generic Lie-algebra and \mathbf{p} is a semisimple ideal.

Proof: since \mathbf{q} is semisimple, $\mathbf{p} = Re\mathbf{q}$ is semisimple, too. So, $\mathbf{p} = \mathbf{p}_1 \odot \dots \mathbf{p}_k$, where the \mathbf{p}_j are simple ideals of \mathbf{p} . Define $\mathbf{q}_j \doteq \{X - iJX : X \in \mathbf{p}_j\}$. Then $\mathbf{q} = \mathbf{q}_1 \odot \dots \odot \mathbf{q}_k$ and $[\mathbf{q}_j, \mathbf{q}] \subseteq \mathbf{q}_j$. So \mathbf{q}_j is a CR-structure of \mathbf{g} which corresponds to the pair (\mathbf{p}_j, J_j) . A trivial computation shows that $J_j = J|_{\mathbf{p}_j}$. Hence, $J\mathbf{p}_j \subseteq \mathbf{p}_j$. This fact concludes the proof. \blacksquare

Hence, a LCR-structure on a semisimple Lie-algebra is given by the complex structures on some simple factors. Each of these factors is described in the Cartan's classification of the complex simple Lie-algebras

g	G	U	$\zeta(\mathbf{U}')$	$dim \mathbf{U}$
$a_n (n \ge 1)$	SL(n+1,C)	SU(n+1)	\mathbf{Z}_{n+1}	n(n+2)
$b_n (n \ge 2)$	SO $(2n+1, C)$	SO(2n+1)	\mathbf{Z}_2	n(2n+1)
$c_n (n \ge 3)$	$\mathbf{Sp}(n,\mathbf{C})$	$\mathbf{Sp}(n)$	${f Z}_2$	n(2n+1)
$d_n(n \ge 4)$	$\mathbf{SO}(2n,\mathbf{C})$	$\mathbf{SO}(2n)$	$\mathbf{Z}_4, n = odd$	n(2n-1)
			$\mathbf{Z}_2 + \mathbf{Z}_2, n = even$	
e_6	$E_6^{f C}$	E_6	${f Z}_3$	78
e_7	$E_7^{f C}$	E_7	${f Z}_2$	133
e_8	$E_8^{f C}$	E_8	${f Z}_1$	248
f_4	$F_4^{f C}$	F_4	${f Z}_1$	52
g_2	$G_2^{f C}$	G_2	${f Z}_1$	14

In the Table (cf. [HE]), g is a simple Lie-algebra over C; n the dimension of a Cartan-subalgebra; G a connected Lie-group such that $Lie(G) = g^R$, where g^R is the realification of g; U an analytical subgroup such that Lie(U) is a compact real form of g (i.e. U is a maximal compact subgroup); and U' is the universal covering of U.

Let us summarise the results in the following

Proposition 2.2.5 Let g_0 be a semisimple and noncompact Lie-algebra. Then we give the decomposition $g_0 = \mathbf{r}_1 \odot ... \odot \mathbf{r}_j \odot \mathbf{p}_1 \odot ... \odot \mathbf{p}_h$. where:

- 1. both \mathbf{r}_i and \mathbf{p}_i are simple real ideals;
- 2. on the \mathbf{r}_i there are no complex structures;
- 3. any p_i takes one of the forms in the Table.

With such a decomposition we may choose any sum $\mathbf{p} = \bigoplus_{l=1}^k \mathbf{p}_{i_l}$ with the endomorphism $J = J_{i_1} \oplus \ldots J_{i_k}$. The pair (\mathbf{p}, J) is the generic LCR-structure on \mathbf{g}_0 .

2.3 Solvable LCR-structures.

A real Lie-algebra g_0 is solvable if one of its derived subalgebras vanishes. Since any ideal of g_0 is solvable, a LCR-structure on g_0 is an ad-invariant complex structure on a solvable ideal.

Lemma 2.3.1 Suppose g_0 is a solvable Lie-algebra and (p, J) is a LCR-structure. Then there exists a subspace u such that $p = u \oplus Ju$

and $J = \begin{pmatrix} 0 & J'' \\ J' & 0 \end{pmatrix}$, where J' and J'' are the restrictions of J to \mathbf{u} and to $J\mathbf{u}$, respectively.

Proof: since \mathbf{p} is solvable there exists an its codimension one ideal \mathbf{p}_1 [VA]. It is easy to show that $J\mathbf{p}_1 \neq \mathbf{p}_1$. Then, there exists $X_1 \in \mathbf{p}_1$ such that $\mathbf{p} = L(X_1, JX_1) \oplus \mathbf{p}_1 \cap J\mathbf{p}_1$. Moreover $(\mathbf{p}_1 \cap J\mathbf{p}_1, J)$ is a LCR-structure of \mathbf{p} . Now the same fact is true for the pair $(\mathbf{p}_1 \cap J\mathbf{p}_1, \mathbf{p}_2)$, where \mathbf{p}_2 is a codimension one ideal in $\mathbf{p}_1 \cap J\mathbf{p}_1$. In that way, we find a family $X_1 \dots X_k$, such that $\mathbf{p} = L(X_1 \dots X_k, JX_1 \dots JX_k)$ and the space $\mathbf{u} = L(X_1 \dots X_k)$ is the desired one.

Let us show the converse: any ideal of a solvable Lie-algebra supports a LCR-structure if and only if it is even dimensional; in that case we write \mathbf{p} as the sum $\mathbf{p} = \mathbf{u} \oplus \mathbf{v}$, where \mathbf{u} and \mathbf{v} have the dimension $\frac{1}{2} \dim \mathbf{p}$. Chosen a linear monomorphism $A: \mathbf{v} \to \mathbf{p}$ such that $\mathbf{u} = A\mathbf{v}$, the complex structure $J = J_A \doteq \begin{pmatrix} 0 & A \\ -A^{-1} & 0 \end{pmatrix}$ is generic: so the LCR-structures depend only on the splitting of \mathbf{p} in equal-dimensional subspaces. Let us proof this fact by induction.

The simplest solvable algebras are the abelian ones, i.e. the ones whose first derived vanishes.

Lemma 2.3.2 Let g_0 be an abelian real Lie-algebra. Then there exists an ad_X -invariant complex structure J on the ideal p if and only if p is even-dimensional. In that case there exist a linear subspace u and a monomorphism $A: u \to p$ such that

LCR-structures 39

1.
$$\mathbf{p} = A\mathbf{u} \oplus \mathbf{u}$$

2. $J = J_A \doteq \begin{pmatrix} 0 & A \\ -A^{-1} & 0 \end{pmatrix}$.

Moreover, fixed p, all the LCR-structure (p, J_A) are equivalent, independently on the subspace u and on the morphism A. Hence, the structure is unique.

Proof: suppose that \mathbf{p} is endowed with an ad_X -invariant complex structure J, then Lemma 2.3.1 gives us the pair (\mathbf{u}, J') desired. Vice versa, let \mathbf{p} be an even-dimensional ideal. Then, choose \mathbf{u} and A, such that $\mathbf{p} = \mathbf{u} \oplus A\mathbf{u}$. The endomorphism J_A is trivially an ad_X -invariant complex structure on \mathbf{p} . If one considers the automorphism $\phi_{AB} \doteq \begin{pmatrix} I & 0 \\ 0 & BA^{-1} \end{pmatrix}$, one has an isomorphism between (\mathbf{p}, J_A) and (\mathbf{p}, J_B) , in fact $J_A \phi_{AB} = \phi_{AB} J_B$. Hence, the complex structure does not depend on A. Finally, we show that does not depend neither on \mathbf{u} : let (\mathbf{v}, C) be a pair such that $\mathbf{p} = \mathbf{v} \oplus C\mathbf{v}$. Then we have $\mathbf{v} = D\mathbf{u}$ and $\mathbf{p} = D\mathbf{u} \oplus AD\mathbf{u}$, where we have taken D Lie-isomorphism. It is easy to show that the pairs $(D\mathbf{u} \oplus AD\mathbf{u}, J_A)$ and $(\mathbf{u} \oplus D^{-1}AD\mathbf{u}, J_{D^{-1}AD})$ are isomorphic. \blacksquare

In Section 2.2, we have shown that, given a compact Lie-algebra g_0 , (p, J) is a LCR-structure if and only if p is contained in the center $\zeta(g_0)$. Lemma 2.3.2 permits us to describe in a deeper way these LCR-structures. In fact, suppose (p, J) is a LCR-structure, then p has to take the form $p = u \oplus Au$, with $J = J_A$. Thus, a LCR-structure on a compact Lie-algebra is equivalent to the choice of an even-dimensional linear subspace of the center.

Theorem 2.3.3 A solvable Lie-algebra g_0 admits a unique LCR-structure supported on each its even-dimensional ideal. Let (\mathbf{p}, J) be a LCR-structure, then there exist two vector spaces \mathbf{u} and \mathbf{v} and an isomorphism A between \mathbf{u} and \mathbf{v} such that $\mathbf{p} = \mathbf{u} \oplus A\mathbf{u}$ and $J = J_A$. Moreover, fixed \mathbf{p} all the LCR-structures (\mathbf{p}, J_A) are equivalent.

Proof: let k be the minimum integer such that $\mathcal{D}^k \mathbf{g}_0 = 0$, then make the proof by induction over k. The base of the induction is given by the abelian case. Now, let \mathbf{g}_0 be a solvable but not abelian real Liealgebra. In any case, $\mathbf{g}_0' \doteq \mathbf{g}_0/\mathcal{D}\mathbf{g}_0$ is abelian. Furthermore J maps $\mathcal{D}\mathbf{p}$ on itself, since $Jad_X = ad_XJ$. So the induced morphism J' defines a LCR-complex structure. If we apply the previous Lemma, we have that $\mathbf{p}' = \mathbf{w}' \oplus J'|_{\mathbf{w}'}\mathbf{w}'$ and $J' = J_{J'|_{\mathbf{w}'}}$. Choose a subspace \mathbf{w} in the class \mathbf{w}' , then we obtain $\mathbf{g}_0 = \mathbf{w} \oplus J^+\mathbf{w} \oplus \mathcal{D}\mathbf{g}_0$ and $J = \begin{pmatrix} 0 & J^+ & 0 \\ J^+ & 0 & 0 \\ 0 & 0 & J_1 \end{pmatrix}$. where J^+ is the restriction to \mathbf{w} and J_1 the one to $\mathcal{D}\mathbf{g}_0$. Finally, we apply the inductive hypothesis on the pair $(\mathcal{D}\mathbf{g}_0, J_1)$.

In conclusion, a solvable Lie-algebra g_0 admits one LCR-structure on each even-dimensional ideal (in the hypothesis that it exists) given by an isomorphism J_A . Hence LCR-structures are essentially given by the choice of even-dimensional ideals. Remark that it is possible to have different LCR-structures of the same dimension.

Example 8 Let g_0 be the real three-dimensional linear space spanned by (E_1, E_2, E_3) whose Lie-product is given by $[E_1, E_2] = [E_2, E_3] = 0$

LCR-structures 41

$$[E_1, E_3] = E_3.$$

Consider now the solvable ideals $\mathbf{p}_1 = L(E_2, E_3)$ and $\mathbf{p}_2 = L(E_1, E_3)$. Since \mathbf{p}_2 is not abelian, the LCR-structures defined on them are inequivalent.

Example 9 Let $g_0(n)$ be the set of upper triangular $n \times n$ real matrices, and n_0 be the ideal whose elements have 0 on the diagonal. A trivial computation shows that n_0 is nilpotent and it coincides with $\mathcal{D}g_0(n)$. Hence, $g_0(n)$ is solvable. Consider the matrix E_{ij} which has 1 in (i,j)-position and 0 elsewhere. If n_0 is odd-dimensional, then

$$\mathbf{n}_k = \mathbf{n}_0 \oplus \bigoplus_{j=1}^{2k-1} \mathbf{R} E_{i_j i_j}$$

is an even-dimensional ideal, as well as it is

$$\mathbf{n}_k = \mathbf{n}_0 \oplus \bigoplus_{i=1}^{2k} \mathbf{R} E_{i_i i_i},$$

when \mathbf{n}_0 is even-dimensional. In both the cases, $\mathbf{g}_0(n)$ admits at least 2^{n-1} LCR-structures, not necessary inequivalent.

2.4 The Levi-Mal'cev decomposition.

Let p be an ideal of g_0 . Then its radical p_r is given by $p \cap r$, where r is the radical of g_0 . Furthermore, if p_s is an its Levi-subalgebra, there

exists a Levi-subalgebra \mathbf{s} of \mathbf{g}_0 containing $\mathbf{p}_{\mathbf{s}}$. Thus, there are the two Levi-Mal'cev decompositions: $\mathbf{p} = \mathbf{p}_{\mathbf{r}} \oplus_{ad} \mathbf{p}_{\mathbf{s}}$ and $\mathbf{g}_0 = \mathbf{r} \oplus_{ad} \mathbf{s}$. Since $\mathbf{p}_{\mathbf{r}}$ is the radical of \mathbf{p} it contains both $[\mathbf{p}_{\mathbf{s}}, \mathbf{r}]$ and $[\mathbf{p}_{\mathbf{r}}, \mathbf{s}]$.

Suppose, now, that (\mathbf{p}, J) is a LCR-structure and that J is denoted by the matrix $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. Moreover, choose the elements U in \mathbf{r} , V in $\mathbf{p_r}$, X in \mathbf{s} and Y in $\mathbf{p_s}$. Then, the condition $ad_{U+X}J = Jad_{U+X}$ is equivalent to the following 1) A[U, V] = [U, AV] + [U, CV]

- 2) A[X.V] = [X, AV]
- 3) A[U, Y] = [U, BY] + [U, DY]
- 4) B[X, Y] = [X, BY]
- 5) C[U, V] = 0
- 6) C[U, Y] = 0
- 7) C[X, V] = [X, CV]
- 8) D[X, Y] = [X, DY].

A direct computation shows that J is the direct sum of A and D. In fact, there is the

Proposition 2.4.1 The matrices B and C vanish.

Proof: in consequence of 7), ImC is an ideal of s. Moreover, we have that $[CV, CV_1] = C[CV, V_1] = 0$, so ImC is abelian. Thus, it is an abelian ideal of a semisimple Lie-algebra and it has to vanish.

The fourth condition says that ker B is an ideal of $\mathbf{p_s}$. Hence, it is semisimple: moreover, $\mathbf{p_s}/\ker B$ is semisimple, too. Otherwise, every subspace \mathbf{t} of \mathbf{r} verifies $\mathcal{D}^n\mathbf{t}=0$, for a suitable n. So ImB does. As linear spaces, we have that $\mathbf{p_s}/\ker B$ and ImB are isomorphic, via the

LCR-structures 43

isomorphism $jX^+ \doteq BX$, where $X^+ = X + \ker B \in \mathbf{p_s}/\ker B$. Let us compute the product $[jX^+, jY^+]$.

First of all, take X, Y in p_s , and compute

$$[BX, BY] = A[BX, Y] - [BX, DY] = AB[X, Y] - B[X, DY] =$$

= $-BD[X, Y] - B[X, DY] = -2BD[X, Y].$

Furthermore, D sends $\ker B$ in $\ker B$, in fact B intertwines A and -D. Hence, $[jX^+, jY^+] = -2j(D[X,Y])^+$. So, we can conclude that $\mathcal{D}^n(\mathbf{p_s}/\ker B)$ vanishes, since $\mathbf{p_s}/\ker B$ is semisimple. Thus, $\mathbf{p_s}$ coincides with $\ker B$.

Remark 2.4.2 The vanishing of C does not depend on the fact that the first factor is solvable. So for a semidirect sum $\mathbf{g}_0 \oplus_{\delta} \mathbf{g}'_0$, with the second factor \mathbf{g}'_0 semisimple, a splitted LCR-structure takes the form $(\mathbf{p} \oplus \mathbf{p}', \begin{pmatrix} A & B \\ 0 & D \end{pmatrix})$.

Proposition 2.4.1 permits us to simplify the list of relations characterising a LCR-structure:

- 1) $(\mathbf{p_r}, A)$ is a LCR-structure on \mathbf{r}
- 2) (p_s, D) is a LCR-structure on s
- 3) $[p_s, r] \subset p_r$
- 4) $[p_r, s] \subset p_r$,
- 5) $A[X, V] = [X, AV], \forall X \in \mathbf{s}, V \in \mathbf{p_r};$
- 6) $A[U, Y] = [U, DY], \forall U \in \mathbf{r}, Y \in \mathbf{p_s}.$

Theorem 2.4.3 Let g_0 be a real Lie-algebra. Then, there exists an its Levi-subalgebra s such that (p_r, J_r) and (p_s, J_s) are LCR-structures on r and s, respectively; and (p, J) is their semidirect sum by the adjoint derivation. Vice versa, if one considers two LCR-structures (p_r, A) and (p_s, D) which verify

- 1) $[p_s, r] \subset p_r$
- 2) $[p_r, s] \subset p_r$
- 3) A[X, V] = [X, AV]
- 4) A[U, Y] = [U, DY]

their semidirect sum by ad is a LCR-structure on g_0 .

2.5 Levi-flat CR-structures.

Morimoto showed that there always exist complex structures J_{MO} on any even dimensional real reductive Lie-algebra, [MO]. Using this result, we prove the existence of Levi-flat CR-structures on every Lie-algebras (except $\mathfrak{su}(2)$). Next, we study their structure. In order to do this, we introduce a new Lie-product Γ on \mathfrak{p} with respect of which the CR-structure (\mathfrak{p}, J) is a Lie's one. Then, we apply Theorem 2.4.3. This allows to give a general structure theorem for Levi-flat CR-structures (Theorem 2.5.10).

Theorem 2.5.1 The only Lie-algebra which does not support any Leviflat CR-structure is $\mathfrak{su}(2)$. LCR-structures 45

Proof: consider a Levi-Mal'cev decomposition $\mathbf{g}_0 = \mathbf{r} \oplus_{ad} \mathbf{s}$. When \mathbf{s} is even-dimensional, Morimoto assures that there exists a complex structure J_{MO} on it. The pair (\mathbf{s}, J_{MO}) is a Levi-flat CR-structure.

Furthermore, we have seen that, if dim $r \geq 2$, there exists a solvable Levi-flat CR-structure (p, J_A) on r.

So, we have to study the case dims odd and dim $\mathbf{r} \leq 1$. When dim $\mathbf{r} = 1$, \mathbf{g}_0 is reductive. In fact, take an element of the center $R_0 + S_0$. Thus, S_0 vanishes and $[R_0, S] = 0$, for any S in \mathbf{s} . Hence, if $\zeta(\mathbf{g}_0) \neq \{0\}$, then $[\mathbf{r}, \mathbf{s}] = 0$, $\mathbf{r} = \zeta(\mathbf{g}_0)$ and $\mathbf{s} = \mathcal{D}\mathbf{g}_0$. Vice versa, suppose that the center vanishes. Then, since \mathbf{r} is an abelian ideal. $[\mathbf{r}, \mathbf{s}]$ is not null and it coincides with \mathbf{r} . So, $\mathbf{g}_0 = \mathcal{D}\mathbf{g}_0$. In both cases, $\mathbf{g}_0 = \zeta(\mathbf{g}_0) \odot \mathcal{D}\mathbf{g}_0$. So, \mathbf{g}_0 is an even-dimensional reductive Lie-algebra, and there is a J_{MO} complex structure on the whole \mathbf{g}_0 .

The last case is given by the odd-dimensional semisimple Lie-algebras g_0 , and it is divided as follows:

- 1. If $rank\mathbf{g}_0 \geq 2$, any even-dimensional linear subspace \mathbf{p} of a Cartan subalgebra supports a Levi-flat CR-structure (\mathbf{p}, J_A) on \mathbf{g}_0 .
- 2. When $rankg_0 = 1$, taken a Cartan subalgebra $\mathbf{h} = \mathbf{R}H_{\alpha}$, the only roots are the vanishing one and $\pm \alpha$. So, the algebra is of the form $\mathbf{g}_0 = \mathbf{R}H_{\alpha} \oplus \mathbf{R}X_{\alpha} \oplus \mathbf{R}X_{-\alpha}$, hence it is three-dimensional. Finally, the only three-dimensional semisimple real Lie-algebras are $\mathbf{su}(2)$ and $\mathbf{sl}(s,\mathbf{R})$. In the Appendix of Chapter 1, we have seen that $\mathbf{su}(2)$ has no Levi-flat CR-structure; while $\mathbf{sl}(2,\mathbf{R})$ is endowed with the Levi-flat CR-structures $(\mathbf{p}_{a,\alpha},J_{a,\alpha})$

Let (\mathbf{p}, J) be a CR-structure on \mathbf{g}_0 . Define the bilinear skewsymmetric form $\Gamma : \mathbf{p} \times \mathbf{p} \to \mathbf{p} : (X, Y) \mapsto [X, Y] - [JX, JY]$.

Lemma 2.5.2 The bilinear form Γ is a Lie-product on \mathbf{p} . Moreover, the structure J is a complex one invariant with respect to the Γ -adjoint derivations of \mathbf{p} .

Consider a CR-structure (\mathbf{p}, J) such that \mathbf{q} is a solvable complex subalgebra. Then \mathbf{p} satisfies the condition $\mathcal{D}^l \mathbf{p} = \{0\}$, for a suitable $l \in \mathbf{N}$. By definition, an element of $\mathcal{D}^k_{\Gamma} \mathbf{p}$ is sum of elements of $\mathcal{D}^k \mathbf{p}$, hence, $\mathcal{D}^l_{\Gamma} \mathbf{p}$ vanishes; and therefore (\mathbf{p}, Γ) is a real Γ -solvable Lie-algebra. Applying the results of Section 3 to the Γ -LCR-structure (\mathbf{p}, J) , we have the

Proposition 2.5.3 Let g_0 be a real Lie-algebra, and (p, J) be a CR-structure, such that q is solvable. Then there exist a linear subspace u of p and a linear monomorphism $E: u \to p$ such that

1.
$$p = u \oplus Eu$$

2.
$$J = J_E$$
.

Moreover, any even-dimensional linear subspace p may be written as $p = u \oplus Eu$ and admits the complex structure J_E .

Let us complexify the Lie-algebra (\mathbf{p}, Γ) . Its complexified linear space is \mathbf{q} itself, on which we may consider the complex product Γ .

Proposition 2.5.4 The pair (\mathbf{q}, Γ) is a Lie-algebra.

In fact,
$$\Gamma(X - iJX, Y - iJY) = \Gamma(X, Y) - \Gamma(JX, JY) - i\{\Gamma(X, JY) + \Gamma(JX, Y)\} = 2\{\Gamma(X, Y) - iJ\Gamma(X, Y)\}$$
 is an element of \mathbf{q} .

47

We also have that $\Gamma(X - iJX, Y - iJY) = 2\{[X, Y] - [JX, JY] - iJ([X, Y] - [JX, JY])\} = 2[X - iJX, Y - iJY]$, and, as a trivial consequence, $B_{\Gamma} = 4B$, where B is the Killing form of the Lie-algebra $(\mathbf{q}, [,])$. This computation suggests the

Proposition 2.5.5 The complex subalgebra q is Γ -semisimple if and only if it is semisimple.

In the last part of this Section we consider a Levi-flat CR-structure (\mathbf{p}, J) . Then in view of a classical result, the subalgebra \mathbf{p} is semisimple if and only if \mathbf{q} is it. Hence there is the following

Proposition 2.5.6 Let (p, J) be a Levi-flat CR-structure on g_0 . Then p is Γ -semisimple if and only if p is semisimple.

Such correspondence is not true for simple and Γ -simple Levi-flat CR-structures: a semisimple \mathbf{p} may be a Γ -simple Lie-algebra. In that case, \mathbf{p} is one of the complex (Γ -)simple algebras of the Cartan's classification [HE]. Otherwise, it is direct sum (with respect of [,] and with respect of Γ) of Γ -simple Γ -ideals \mathbf{s}_i .

Proposition 2.5.7 Let (p, J) be a semisimple Levi-flat CR-structure on g_0 . If p is not Γ -simple, there are (not necessary simple) ideals s_i of p such that

1.
$$\mathbf{p} = \mathbf{s}_1 \odot \ldots \odot \mathbf{s}_k$$
;

2. each s_i supports the Γ_X -invariant complex structure J_{s_i} .

Now, take a Levi-flat CR-structure (\mathbf{p}, J) . Since (\mathbf{p}, Γ) is a Liealgebra, consider its Levi-Mal'cev decomposition $\mathbf{p} = \mathbf{r}_{\Gamma} \oplus_{\Gamma} \mathbf{s}_{\Gamma}$, where \mathbf{r}_{Γ} is the Γ -radical and \mathbf{s} is a Γ -Levi-subalgebra.

Proposition 2.5.8 The Γ -radical \mathbf{r}_{Γ} and any Γ -Levi-subalgebra \mathbf{s}_{Γ} are invariant under J.

A trivial consequence is the

Corollary 2.5.9 The pairs $(\mathbf{r}_{\Gamma}, J|_{\mathbf{r}_{\Gamma}})$ and $(\mathbf{s}_{\Gamma}, J|_{\mathbf{s}_{\Gamma}})$ are Levi-flat CR-structures on (\mathbf{p}, Γ) . The structure (\mathbf{p}, J) is their semidirect sum by Γ .

The global result can be stated in the following

Theorem 2.5.10 Let (\mathbf{p}, J) be a Levi-flat CR-structure. Consider the Γ -Levi-Mal'cev decomposition $\mathbf{p} = \mathbf{r}_{\Gamma} \oplus_{\Gamma} \mathbf{s}_{\Gamma}$. Then the Γ -radical \mathbf{r}_{Γ} takes the form $\mathbf{r}_{\Gamma} = \mathbf{u} \oplus E\mathbf{u}$ and the restriction $J|_{\mathbf{r}_{\Gamma}}$ is equivalent to J_E . Furthermore, the Γ -Levi-algebra \mathbf{s}_{Γ} is direct sum of J-invariant ideals \mathbf{s}_i of \mathbf{s} which support Γ_X -invariant complex structures $J_i = J|_{\mathbf{s}_i}$. So the Levi-flat CR-structure is given by the pair (\mathbf{p}, J) whose elements are

$$\mathbf{p} = (\mathbf{u} \oplus E\mathbf{u}) \oplus_{ad} \mathbf{s}_1 \odot ... \odot \mathbf{s}_k$$

$$J=J_E\oplus J_1\oplus\ldots\oplus J_k.$$

2.6 Appendix.

In this Appendix we describe LCR-structures on low dimensional Lie-algebras \mathbf{g}_0 . First of all, remind that there exist just two different bidimensional Lie-algebras: the abelian one and the Lie-algebra \mathbf{h}_0 of the matrices $\begin{pmatrix} a & b \\ 0 & -a \end{pmatrix}$, which is solvable. Both of them are endowed with the complex structure given by the "multiplication by i."

So, the case dim $g_0 = 2$ is solved. Now, let dim g_0 be greater than 3. Let us start with dim $g_0 = 3$. Such Lie-algebras are completely classified in [MI]. The classification makes use of the map $\varphi : g \to \mathbb{R} : X \mapsto tr(ad_X)$. Since $tr([ad_X, ad_Y]) = 0$, φ is a Lie-homomorphism. The kernel $\mathbf{u} \doteq \ker \varphi$ is an ideal called *unimodular kernel*; g_0 is said unimodular if $g_0 = \mathbf{u}$. An important result is given by the

Lemma 2.6.1 Let g_0 be an unimodular 3-dimensional Lie-algebra endowed with a scalar product. Then there exists an orthonormal base (E_1, E_2, E_3) such that

1.
$$[E_2, E_3] = \lambda_1 E_1$$
, $[E_3, E_1] = \lambda_2 E_2$ and $[E_1, E_2] = \lambda_3 E_3$;

2.
$$B(X,Y) = -2(\lambda_2 \lambda_3 X^1 Y^1 + \lambda_1 \lambda_3 X^2 Y^2 + \lambda_1 \lambda_2 X^3 Y^3).$$

The 3-dimensional unimodular Lie-algebras are classified by the following relations

$$1. \ \lambda_1 = \lambda_2 = \lambda_3 = 0$$

$$2. \ \lambda_1 \neq 0, \ \lambda_2 = \lambda_3 = 0$$

3.
$$\lambda_1 \lambda_2 \neq 0$$
, $\lambda_3 = 0$

4.
$$\lambda_1 \lambda_2 \lambda_3 \neq 0$$
.

Case1: g_0 is abelian and isomorphic to \mathbf{R}^3 . Each plane supports a LCR-structure: in fact, let $\mathbf{p} = L(X,Y)$ be a fixed plane; a LCR-structure is given by $J(X,Y) \doteq (-Y,X)$.

Case2: the Lie-product is described by $[E_2, E_3] = \lambda_1 E_1$, $[E_3, E_1] = 0$ and $[E_1, E_2] = 0$. The planes $\mathbf{p}_2 = L(E_1, E_3)$, $\mathbf{p}_3 = L(E_1, E_2)$ and $\mathbf{p}_X = L(E_1, X)$ are abelian ideals endowed with the LCR-structures $J_2(E_1, E_3) \doteq (-E_3, E_1)$ and $J_3(E_1, E_2) \doteq (-E_2, E_1)$. They are all the Levi-flat CR-structures of the algebra.

Case3: let us consider the bidimensional subalgebras: $L(E_1, E_2)$ is the only abelian one and it is even an ideal. Then, we have to look for the solvable ones: so, we study the equation [X, Y] = Y.

Since $[X,Y]=\lambda_1(X^2Y^3-X^3Y^2)E_1+\lambda_2(X^3Y^1-X^1Y^3)E_2$, it must be $Y^3=0$ and $Y^1Y^2X^3\neq 0$. Two subcases are possible: or $\lambda_1\lambda_2>0$, and there are no solvable subalgebras; either $\lambda_1\lambda_2<0$. Hence a solvable subalgebra p=L(X,Y) is generated by $Y=(1,\sqrt{-\frac{\lambda_2}{\lambda_1}},0)$ and $X=(X^1,X^2,\sqrt{-\frac{1}{\lambda_1\lambda_2}})$. Since, $[X,E_1]=\sqrt{-\frac{\lambda_2}{\lambda_1}}E_2$, no L(X,Y) is an ideal. In fact, it would be $(0,\sqrt{-\frac{\lambda_2}{\lambda_1}},0)=\alpha Y+\beta X$ that implies $\alpha=\beta=0$, which is a contradiction.

Case4: B is nonsingular, i.e. g_0 is semisimple. But 3-dimensional semisimple Lie-algebras are simple. Hence g_0 has no nontrivial ideals. So there are no LCR-structures on such a g_0 . A deeper analysis shows that if all the λ_i are positive, g_0 is isomorphic to su(2); while if one of them is negative it is isomorphic to $sl(2, \mathbf{R})$. In both the cases g_0 is a real form (compact or not) of $sl(2, \mathbf{C})$. A detailed study of these Lie-algebras has been done in the Appendix of Chapter 1.

LCR-structures 51

The last case is when g_0 is not unimodular. Which means that φ is a nonvanishing real linear form. So its kernel \mathbf{u} is an abelian 2-dimensional ideal. And at least one LCR-structure exists.

Summarising all the case, one obtains that a 3-dimensional real Liealgebra g_0 either is a (simple) real form of $sl(2, \mathbb{C})$ either is endowed with (at least) one LCR-structure given on a 2-dimensional abelian ideal.

Remark that, if one considers the 4-dimensional case, the only non-solvable Lie-algebra endowed with a LCR-structure is $\mathbf{R} \oplus \mathbf{s}_0$, where \mathbf{s}_0 is a real form of $\mathbf{sl}(2,\mathbf{C})$. The study of LCR-structures on 2- and 3-dimensional Lie-algebras, make easy the classification on 5-dimensional ones. Such a study is quite interesting since it makes use of Levi-Mal'cev decomposition. In the sequel, let $\dim \mathbf{g}_0 = 5$. Suppose that \mathbf{g}_0 is decomposed as $\mathbf{g}_0 = \mathbf{r}_0 \oplus_{ad} \mathbf{s}_0$. Let us consider the dimension of \mathbf{r}_0 . When $\dim \mathbf{r}_0 = 0$, \mathbf{g}_0 is semisimple. Since there are no semisimple algebras of dimension 1 and 2, \mathbf{g}_0 may not have nonvanishing ideals. So \mathbf{g}_0 is simple and it has no LCR-structures.

Let dim $\mathbf{r}_0 = 1$. Then \mathbf{r}_0 is the real line and it is abelian; hence \mathbf{s}_0 is simple. So \mathbf{g}_0 has no LCR-structures.

In the case dim $\mathbf{r}_0 = 2$, \mathbf{r}_0 either is abelian or it is the solvable algebra of matrices $\begin{pmatrix} a & b \\ 0 & -a \end{pmatrix}$. The corresponding Levi-subalgebra \mathbf{s}_0 is simple and coincides either with $\mathbf{su}(2)$ or with $\mathbf{sl}(2,\mathbf{R})$. Even in this case, \mathbf{s}_0 does not admit LCR-structures. The only one is given by the solvable ideal \mathbf{r}_0 endowed with an endomorphism of the form J_A .

The cases $\dim \mathbf{r}_0 = 3,4$ can not occur, since \mathbf{s}_0 should be 2- or 1-

dimensional.

The last case is dim ${\bf r}_0=5.$ Then ${\bf g}_0$ is solvable and it admits LCR-structures on all its 2- and 4-dimensional ideals.

LCR-algebras.

3.1 Introduction to Chapter 3.

In this Chapter (as well in the next one), we focus our attention on LCR-algebras. Precisely, we are interested to describe in what extent the properties of an algebra $\mathbf{g} = \mathbf{g_0} \oplus_{\mathbf{R}} \mathbf{C}$ depend upon the datum of a LCR-structure \mathbf{q} . This is slightly different from what we did in the first two chapters, where a LCR-structure was studied for itself.

Thus, we develop a structure theory of LCR-algebras. First of all, we introduce some useful classes of such Lie-algebras: the CR-nilpotent. the CR-solvable and the CR-semisimple ones.

To study the CR-nilpotent LCR-algebras, we need to define the LCR-representations, i.e. those representations which preserve the LCR-structure. Via these representations, we are able to show that the CR-nilpotent LCR-algebras are characterised by the vanishing of $\mathbf{q} \cap \mathcal{C}^k \mathbf{g}$, for a suitable k. Thus, they are CR-solvable.

Then, in the theory of CR-solvable LCR-algebras the CR-solvable CR-radical \mathbf{r}^* is studied; of course \mathbf{r}^* plays the role of the classical

solvable radical. For instance, the property $\mathbf{r}^* = 0$ determines CRsemisimple LCR-algebras. Moreover, its behaviour is described by the Cartan's criteria for CR-solvability and CR-semisimplicity. In Section 3.7, we give a description of CR-maximal CR-semisimple LCRalgebras g, where CR-maximal means that any nontrivial LCR-ideal of g is contained in q. A CR-maximal CR-semisimple LCR-algebra is a reductive Lie-algebra and it is a fundamental factor of a CR-semisimple LCR-algebra (Theorem 3.7.4). Thus, we give a structure result for CR-semisimple LCR-algebras. In particular, Theorem 3.7.10 assures that a Lie-algebra ${\bf g}$ admits a semisimple LCR-structure $\overline{{\bf q}}$ if and only if g is a noncompact reductive Lie-algebra. Finally, we obtain a result concerning any LCR-algebra and we prove the existence of Levi sub-LCR-algebras s*, , obtaining the Levi-Mal'cev CR-decomposition $g = r^* \oplus_{ad} s^*$. Thus, a generic LCR-algebra may be studied as the semidirect sum of a CR-solvable ideal and a CR-semisimple subalgebra.

3.2 CR-nilpotent LCR-algebras.

Let \mathbf{g}_0 be a real Lie-algebra on which a LCR-structure is given via an ideal \mathbf{q} of the complexified $\mathbf{g} = \mathbf{g}_0 \otimes_{\mathbf{R}} \mathbf{C}$. The datum of the real Lie-algebra \mathbf{g}_0 corresponds to a fixed conjugation τ . Consider now a complex linear space V decomposed as $V = W \oplus \overline{W} \oplus V_1$, where the overlined objects are conjugated with respect of its conjugation τ_V . LCR-algebras 55

Definition 3.2.1 A representation $\rho : g \to gl(V)$ is said to be a LCR-representation if

- i) $\rho(x)$ commutes with τ_V , for all $x \in g_0$;
- ii) the family $\rho(q)$ maps V into W;
- iii) the subspace W is $\rho(\mathbf{g})$ -invariant.

A LCR-representation ρ is said to be trivial, whenever $\rho(\mathbf{q})$ vanishes.

A LCR-representation intertwines the conjugation of \mathbf{g} and the one of $\mathbf{gl}(V)$: $\rho(\overline{x}) = \overline{\rho(x)}$, $\forall x \in \mathbf{g}$. Moreover the family $\rho(\overline{\mathbf{q}})$ sends V into \overline{W} This implies that ρ sends \mathbf{q} in another LCR-structure,

Proposition 3.2.2 The subalgebra $\rho(\mathbf{q})$ is a LCR-structure on $\rho(\mathbf{g}_0)$. Furthermore, it is a Levi-flat CR-structure on $\mathbf{gl}(V_0)$.

Proof: since ρ is a representation, $\rho(\mathbf{q})$ is an ideal of $\rho(\mathbf{g})$. Moreover $\overline{\rho(\mathbf{q})} = \rho(\overline{\mathbf{q}})$. In fact, if we take φ in $\rho(\mathbf{q}) \cap \rho(\overline{\mathbf{q}})$, its range is included in $W \cap \overline{W}$. Then φ vanishes.

A simple computation shows that ad is a LCR-representation.

Definition 3.2.3 A LCR-representation ρ is said to be CR-nilpotent if and only if, for any $x \in \mathbf{g}$, exists k such that $\rho(x)^k V \cap W = \{0\}$. A LCR-algebra \mathbf{g} is said CR-nilpotent, when ad is a CR-nilpotent LCR-representation.

The second part of the definition has the following converse.

Proposition 3.2.4 Let ρ be a CR-nilpotent LCR-representation, then $\rho(\mathbf{g})$ is CR-nilpotent.

Proof: take x in g. Since $\rho(x)$ sends W into W, the map $\rho(x)|_W$ is nilpotent, as well as $\rho(Q)$ is nilpotent, for all Q in \mathbf{q} . So, $ad_{\rho(x)|_W}:$ $\mathbf{gl}(W) \to \mathbf{gl}(W)$ is a nilpotent map: i.e. $ad_{\rho(x)|_W}^k = 0$. If x and y are elements of \mathbf{g} such that $ad_{\rho(x)}^k \rho(y) \in \rho(\mathbf{q})$, for a suitable k, then $ad_{\rho(x)}^k \rho(y)$ maps V into W. Thus $ad_{\rho(x)}^{k+h} \rho(y)$ vanishes.

Lemma 3.2.5 Let g be a CR-nilpotent LCR-algebra. Then there exists a CR-ideal of codimension one.

Proof: consider the set $S = \{\mathbf{h} \subseteq \mathbf{g} : [\mathbf{h}, \mathbf{h}] \subseteq \mathbf{h}, 0 < \dim \mathbf{h} < \dim \mathbf{g}, \tau \mathbf{h} = \mathbf{h}, \mathbf{h} \cap \mathbf{q} \neq \{0\}\}$. S is not empty. In fact, if $x \in \mathbf{p} = Re\mathbf{q}$, $\mathbf{h}(x) = SA(x, Jx)$ verifies the following relations

- a) $h(x) \subseteq q \oplus \overline{q} \subseteq g$;
- b) $h(x) \cap q \supseteq C(x iJx)$;
- c) $h(x) = \tau h(x)$.

Take an element h in S of maximal dimension. Then h is CR-nilpotent. Consider the linear space $U=\mathbf{g}/\mathbf{h}$, with the subspace $T=\mathbf{q}/\mathbf{h}\cap\mathbf{q}$, then the following decomposition is given $U=T\oplus\overline{T}\oplus U_1$. Let $\pi:\mathbf{g}\to U$ denote the canonical projection. Finally, remark that when x is an element of \mathbf{h} , ad_x induces an endomorphism $\alpha(x)$ of U. The map $\alpha:\mathbf{h}\to\mathbf{gl}(U)$ is a CR-nilpotent LCR-representation of \mathbf{h} : take $x,y\in\mathbf{g}$, then $\alpha(x)^k(y+\mathbf{h})=ad_x^ky+\mathbf{h}$. Such an element is in T if and only if ad_x^ky is in \mathbf{q} . Since \mathbf{h} is CR-nilpotent, this fact implies that $\alpha(x)^kU\cap T=\{0\}$. The corresponding restricted representation $\tilde{\alpha}:\mathbf{h}\to\mathbf{gl}(T)$ is nilpotent. Take now an element $t\in T/\{0\}$ such that $\alpha(\mathbf{h})t=0$. The condition is equivalent to the choice of an element

LCR-algebras 57

 $Q \in \mathbf{q}/\mathbf{q} \cap \mathbf{h}$ such that $ad_Q \mathbf{h} \subseteq \mathbf{h}$. Thus Q is in $\mathbf{n}(\mathbf{h})/\mathbf{h}$, and $\dim \mathbf{n}(\mathbf{h}) > \dim \mathbf{h}$. Since $\mathbf{n}(\mathbf{h})$ is in S, it coincides with \mathbf{g} and \mathbf{h} is a CR-ideal. For any $y \in \mathbf{n}(\mathbf{h})/\mathbf{h}$, $\mathbf{h}_y \doteq \mathbf{h} \oplus \mathbf{C}(y + \overline{y})$ is an element of S different of \mathbf{h} . So, \mathbf{h}_y coincides with \mathbf{g} and \mathbf{h} has codimension one.

Theorem 3.2.6 Given a CR-nilpotent LCR-representation ρ , the set $V' \doteq \{v \in V : \rho(g)v \cap W = \{0\}\}$ is not vanishing.

Proof: consider the representation $\tilde{\rho}: \mathbf{g} \to \mathbf{gl}(W): x \mapsto \rho(x)|_{W}$. Since ρ is CR-nilpotent, $\tilde{\rho}$ is nilpotent. Hence the set $\{v \in V: \rho(\mathbf{g})v = 0\}$ is nonvanishing. Finally, it is contained in V'.

Proposition 3.2.7 Let T be a τ -stable ρ -invariant linear subspace of V. Define $\tilde{V} = V/T$ and $\tilde{\rho} : g \to gl(\tilde{V}) : x \mapsto \widetilde{\rho(x)}, \ \widetilde{\rho(x)}[v] = [\rho(x)v]$. Then $\tilde{\rho}$ is a CR-nilpotent LCR-representation.

Proof: First of all, remark that $\tilde{\tau}\tilde{v} = \tilde{\tau}(v+T) = \overline{v} + T = \tilde{\tau v}$. Moreover, if $x \in g_0$,

$$\widetilde{\rho(x)}\widetilde{\tau} = \widetilde{\rho(x)}\tau = \widetilde{\tau}\widetilde{\rho(x)} = \widetilde{\tau}\widetilde{\rho(x)}.$$

Take, now, $Q \in \mathbf{q}$, then $\widetilde{\rho(Q)}\widetilde{v} = \widetilde{\rho(Q)}v \in \widetilde{W}$ and $\widetilde{\rho(Q)}\widetilde{V} \subseteq \widetilde{W}$. Obviously, $\widetilde{\rho(x)}\widetilde{W} \subseteq \widetilde{W}$, $\forall x \in \mathbf{g}$. Finally, suppose that $\widetilde{\rho(x)^k}v \in \widetilde{W}$. then $\rho(x)^k v \in W$, which is false.

Let ρ be a LCR-representation CR-nilpotent of g on V. Consider a subspace $V_1 \subseteq V$ such that

- 1. $\tau V_1 = V_1$
- 2. $\rho(\mathbf{g})V_1 \subseteq V_1$

Such a V_1 exists. In fact, $\forall w$ such that $\rho(\mathbf{g})w = 0$, $W_1 = \mathbf{C}(w + \overline{w}) = \overline{W_1}$ and $\rho(\mathbf{g})W_1 = 0$.

Then define the subspaces $V_i = \{v : \rho(\mathbf{g})v \subseteq V_{i-1}\}$

Corollary 3.2.8 The representation $\rho_i : g \to gl(V) : x \mapsto \rho(\widetilde{x)}|_{V_{i+1}}$ is a CR-nilpotent LCR-representation.

Proposition 3.2.9 Take the subspaces V_i defined as above. Then there exists an integer s, such that $V_1 \subseteq V_2 \subseteq \ldots \subseteq V_s = V$. For each $i \leq s$, $\tau V_i = V_i$ and V_i is invariant under $\rho(\mathbf{g})$.

Proof: let us prove by induction that $V_i \subseteq V_{i+1}$. Since $\rho(\mathbf{g})V_1 \subseteq V_1$, then $V_1 \subseteq V_2$. Now, by induction hypothesis, let $V_i \subseteq V_{i+1}$ and take $v \in V_{i+1}$, so $\rho(\mathbf{g})v \subseteq V_i \subseteq V_{i+1}$, and hence $v \in V_{i+2}$. This fact implies that $\rho(\mathbf{g})V_i \subseteq V_i$. Then, we prove that $\tau V_i = V_i$. In fact $\tau V_1 = V_1$; suppose $\tau V_i = V_i$ and take v in V_{i+1} , then $\rho(x)\tau v = \tau \rho(\overline{x})v \in \tau V_i = V_i$. By Corollary 3.2.8, there exists an element $\tilde{v} \in V_{i+1}/V_i$ such that

- 1. $\tilde{v} \neq 0$
- $2. \ \tilde{\rho}(\mathbf{g})\tilde{v} \cap \widetilde{W} = \{0\},\$

where $\widetilde{W} = W \cap V_{i+1}/W \cap V_i$. Hence, there exists $v \in V$ which does not stay in V_i and such that $\rho(g)v \cap W \cap V_{i+1} \subseteq V_i$. Then $\rho(g)v \cap W \subseteq V_i$ and $v \in V_{i+1}$. So dim $V_i < \dim V_{i+1}$ and there exists an integer s such that $V_s = V$.

If g is CR-nilpotent, then ad is a CR-nilpotent LCR-representation. Let us consider a τ -stable ideal $\mathbf{g}_1 \subseteq \mathbf{g}$ which does not intersect \mathbf{q} and take the corresponding family of subspaces $\mathbf{g}_i = \{x : [x, \mathbf{g}] \subseteq \mathbf{g}_{i-1}\}.$ LCR-algebras 59

Then, each \mathbf{g}_i is a τ -stable ideal of \mathbf{g} ; there exists an integer s such that $\mathbf{g}_s = \mathbf{g}$; and \mathbf{g}_i is strictly contained in \mathbf{g}_{i+1} . Moreover, for a suitable j, \mathbf{g}_j is a LCR-ideal.

At this point, we have all the elements to give a characterisation of CR-nilpotent LCR-algebras in the terms of its central series.

Theorem 3.2.10 The LCR-algebra \mathbf{g} is CR-nilpotent if and only if there exists p such that $C^p\mathbf{g} \cap \mathbf{q} = \{0\}$.

Proof: suppose $C^p \mathbf{g} \cap \mathbf{q} = \{0\}$. Since ad_x^p has range in $C^p \mathbf{g}$, the intersection $ad_x^p \mathbf{g} \cap \mathbf{q}$ vanishes, for all x in \mathbf{g} . Vice versa, consider the above family \mathbf{g}_i . It results that $C^i \mathbf{g} \subseteq \mathbf{g}_{s-i}$, so $C^{s-1} \mathbf{g} \cap \mathbf{q} = \{0\}$.

Corollary 3.2.11 Let g be a n-dimensional CR-nilpotent LCR-algebra, and q have codimension k. Then there exist some ideals \mathbf{h}_i of g such that

- 1) dim $\mathbf{h}_i = n i$;
- 2) $h_0 = g \supseteq h_1 \supseteq ... \supseteq h_m = \{0\};$
- 3) $[g, h_i] \subseteq h_{i+1}$;
- 4) h_i is a LCR-ideal, if $i \leq k$.

Proof: let $g_1 \subseteq g_2 \subseteq ... \subseteq g_s = g$ be the elements of the above family. Take a pair of linear subspaces a and b such that $g_i \subseteq b \subseteq a \subseteq g_{i+1}$. Then, we have $[g, a] \subseteq [g, g_{i+1}] \subseteq g_i \subseteq b \subseteq a$, and we complete the family g_i with elements whose codimensions have step 1.

3.3 CR-solvable LCR-algebras.

A sub-LCR-algebra \mathbf{h} is said CR-solvable if there exists an integer l > 0 such that $\mathcal{D}^l \mathbf{h} \cap \mathbf{q} = \{0\}$ and $\mathcal{D}^{l-1} \mathbf{h} \cap \mathbf{q} \neq \{0\}$. Thus the LCR-structure $\mathbf{h} \cap \mathbf{q}$ on \mathbf{h}_0 is solvable. Moreover, if \mathbf{h} is a solvable sub-LCR-algebra, it is trivially CR-solvable. Thanks to Theorem 3.2.10 a CR-nilpotent LCR-algebra is CR-solvable.

Proposition 3.3.1 The LCR-algebra g is CR-solvable if and only if there exists a family of LCR-ideals $g_0 = g, g_1, \ldots, g_s$ such that

- 1. $\mathbf{g}_s \cap \mathbf{q} = \{0\}$
- $2. \mathbf{g}_{i+1} \subseteq \mathbf{g}_i$
- 3. g_i/g_{i+1} is CR-abelian.

Proof: let g be CR-solvable, then the family $\mathcal{D}^i g$ is as above. Vice versa, let $\{g_i\}_{i\in I}$ be a family of LCR-ideals which satisfy the three conditions. Since g_i/g_{i+1} is CR-abelian, then $\mathcal{D}^j g \cap q \subseteq g_j \cap q$; and g is CR-solvable.

Theorem 3.3.2 Let \mathbf{g} be a CR-solvable LCR-algebra and \mathbf{r} be its radical. Then \mathbf{q} is a LCR-structure of \mathbf{r} and it is given the decomposition $\mathbf{g} = \tilde{\mathbf{q}} \oplus \mathbf{r}_1 \oplus \mathbf{s}$, where $\tilde{\mathbf{q}}$ is the sum $\mathbf{q} \odot \overline{\mathbf{q}}$, $\mathbf{r} = \tilde{\mathbf{q}} \oplus \mathbf{r}_1$ is the decomposition induced by the LCR-structure \mathbf{q} on \mathbf{r} and \mathbf{s} is a Levi-subalgebra.

Proof: since g is CR-solvable, q is a solvable ideal. Hence, $q \subseteq r$. \blacksquare Moreover, we know, by Theorem 2.4.3, that a LCR-structure q on the radical r is a LCR-structure on the whole g if and only if there exists a Levi-subalgebra s, under which it is invariant. Thus, we give the

LCR-algebras 61

Theorem 3.3.3 The LCR-structures with respect of which g is a CR-solvable LCR-algebra are all the LCR-structures on the solvable radical r which are invariant under a suitable Levi-subalgebra s.

Any subalgebra k of a CR-solvable LCR-algebra g satisfies the condition $\mathcal{D}^l k \cap q = \{0\}$. Of course, if it is a sub-LCR-algebra it is CR-solvable. A CR-quotient is CR-solvable, too.

Proposition 3.3.4 Let h be a CR-solvable LCR-ideal and g/h be CR-solvable, then g is CR-solvable.

Proof: since g/h is CR-solvable, $q/h \cap q$ is solvable; similarly, $h \cap q$ is solvable. Thus, q is solvable. Let us give the proof by induction on dim g. When g is bidimensional, it is solvable and it is CR-solvable with respect of its unique LCR-structure. Now, suppose that the fact is true for all the LCR-algebras whose dimension is less than dim g. Since g/h is CR-solvable, g/h is different from $\mathcal{D}(g/h)$. Thus $g \neq \mathcal{D}g$. Take a τ -stable subspace of g k containing $\mathcal{D}g$ such that codimk/h is 1. Then k + h is a LCR-ideal of codimension 1 of g. Moreover, h is a CR-solvable LCR-ideal of k + h such that k + h/h is a CR-solvable LCR-ideal of g/h. Thus, k + h is CR-solvable. Furthermore k + h contains $\mathcal{D}g$. Then, either $\mathcal{D}g \cap q$ vanishes or $\mathcal{D}g$ is a LCR-ideal. In any case g is CR-solvable.

Proposition 3.3.5 Let g be a CR-solvable LCR-algebra, then there exists a LCR-ideal h such that $\dim(g/h) = 1$

Proof: if g is CR-abelian, any τ -stable subspace containing $\tilde{\mathbf{q}}$ is a LCR-ideal. Otherwise, any τ -stable subspace containing $\mathcal{D}\mathbf{g}$ is it. Such a subspace exists, since, if $\mathbf{a} \supseteq \mathcal{D}\mathbf{g}$, then $\mathbf{a} + \overline{\mathbf{a}} \supseteq \mathcal{D}\mathbf{g}$.

Proposition 3.3.6 Let g be a CR-solvable LCR-algebra and ρ an its LCR-representation on the linear space V (dim_C V = N). Then, there exist some $\lambda_i \in g^*$ and a basis $\{v_1 \dots v_N\}$ for V such that, for any $x \in g$,

$$\rho(x) = \begin{pmatrix} \lambda_1(x) & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_N(x) \end{pmatrix}.$$

In particular, $\forall x \in \mathbf{g}, \rho(x)v_1 = \lambda_1(x)v_1$.

The proof, by induction on dim g, is based on the following Lemmas 3.3.7 and 3.3.8. The basis of the induction is given by the case dim g = 2, for which g is solvable and the result is classical, [VA].

Lemma 3.3.7 In the above hypothesis, there exists a nonvanishing vector of V which is an eigenvector for any $\rho(x)$, $x \in g$.

Proof: let \mathbf{h} be a LCR-ideal of \mathbf{g} with $\dim(\mathbf{g/h}) = 1$, and x_0 be in \mathbf{g} such that x_0 is not in \mathbf{h} . By induction hypothesis, consider a nonvanishing vector $w \in V$ and a $\lambda \in \mathbf{h}^*$ such that $\rho(y)w = \lambda(y)w$, for any $y \in \mathbf{h}$. Define $w_s \doteq \rho(x_0)^s w$. Let p be the greatest integer such that w, w_1, \ldots, w_s are linearly independents. Define $W_{-1} = \{0\}$ and $W_r = L(w, \ldots w_r)$. Hence, $w_q \in W_p$, whenever $q \geq p$. Moreover, $\rho(x_0)$ maps W_p in itself and W_r into W_{r+1} , where r < p.

LCR-algebras 63

Lemma 3.3.8 Let $r \leq p$ and $y \in h$, then $\rho(y)w_r \equiv \lambda(y)w_r$, $modW_{r-1}$. Moreover, $\rho(y)W_p \subseteq W_p, \forall y \in h$.

Proof: when r = 0, we have $\rho(y)w = \lambda(y)w$. Let the thesis be true for r < p, then $\rho(y)w_{r+1} = \rho(y)\rho(x_0)w_r = \rho(x_0)\rho(y)w_r + \rho([y, x_0])w_r$. Then $\rho([y, x_0]w_r)$ is in W_r and $\rho(y)w_r = \lambda(y)w_r + w'_r$. Thus, $\rho(y)w_{r+1}$ coincides with $\lambda(y)w_{r+1}$ modulo an element of W_r .

Let us return to the proof of Theorem 3.3.6: we have shown that $\rho(y)$ and $\rho(x_0)$ let W_p invariant, so $tr(\rho([y,x_0])|_{W_p})$ is null. Otherwise. $\forall z \in h$, $tr(\rho(z)|_{W_p}) = (1+p)\lambda(z)$. Hence, $\lambda([y,x_0]) = 0$; so, by induction, $\rho(y)w_r = \lambda(y)w_r$, with y in h. Take, now, an eigenvector v_1 of $\rho(x_0)$ in W_p : $\rho(x_0)v_1 = cv_1$. Define λ_1 as λ on h and as c in x_0 . Obviously, λ_1 stays in g^* and $\rho(x)v_1 = \lambda_1(x)v_1$, $\forall x \in g$. Considering the LCR-representation ρ_1 induced by ρ , ρ_1 : $g \to gl(V/Cv_1)$, and using the induction on dim V, we obtain the desired basis $\{v_j\}$.

Proposition 3.3.9 Let g be a CR-solvable LCR-algebra, then there exists a family of sub-LCR-algebras $g_1 = g, g_2, ..., g_{n+1} = \{0\}$, (n = dimg), such that g_{i+1} is a 1-codimensional LCR-ideal of g_i .

Proof: let us construct the LCR-ideal \mathbf{g}_2 . In the case that $\mathcal{D}\mathbf{g}$ is a LCR-ideal, a τ -stable hyperplane V containing $\mathcal{D}^1\mathbf{g}$ may be chosen as \mathbf{g}_2 . When $\mathcal{D}\mathbf{g}$ is not a LCR-ideal, \mathbf{g} is CR-abelian. Since $\dim \mathcal{D}\mathbf{g} < n-1$ (otherwise, it would be $\dim \tilde{\mathbf{q}} = 1$), then as \mathbf{g}_2 take a τ -stable hyperplane which contains $\mathcal{D}^1\mathbf{g}$ and which intersects \mathbf{q} . Finally, by induction, we construct the family required.

Proposition 3.3.10 Let g be a CR-solvable LCR-algebra and ρ an its LCR-representation on a finite-dimensional space V. Then the set $\mathbf{a} = \{x \in \mathbf{g} : \rho(x) \text{ is } CR\text{-nilpotent}\}$ is a LCR-ideal containing $\mathcal{D}\mathbf{g}$.

Proof: consider the sets $\mathbf{b} = \{x \in \mathbf{g} : \rho(x) \text{ is nilpotent}\}\$ and $\mathbf{c}(\mathbf{q}) = \{x \in \mathbf{q} : \rho(x) \text{ is nilpotent}\}.$

Then $a\supseteq b\supseteq c(q);$ and $a\cap q=c(q)\supseteq \mathcal{D} q\neq \{0\}.$ Obviously, $\overline{c(q)}=c(\overline{q}) \text{ and } \overline{a\cap q}=a\cap \overline{q}.$

Since $\rho(x)v_j = \lambda_j(x)v_j mod \oplus_{i < j} \mathbf{C}v_i$, the element x stays in \mathbf{b} if and only if $\lambda_i(x) = 0$, for any i. Hence, $\mathcal{D}\mathbf{g} \subseteq \mathbf{b} \subseteq \mathbf{a}$, and \mathbf{a} is an ideal containing $\mathcal{D}\mathbf{g}$. So it is a LCR-ideal.

Theorem 3.3.11 The CR-algebra g is CR-solvable if and only if $\mathcal{D}g$ is CR-nilpotent.

Proof: suppose $\mathcal{D}g$ is CR-nilpotent, then $\mathcal{D}g$ and $g/\mathcal{D}g$ are CR-solvable. Hence g itself is CR-solvable. Vice versa, let g be CR-solvable, then $\mathcal{D}g$ is contained in the LCR-ideal a, defined in the above Theorem. Thus, $\mathcal{D}g$ is CR-nilpotent.

3.4 The CR-radical.

Take two CR-solvable LCR-ideals h and k. Then, the sum h + k is a LCR-ideal and $h + k/h \simeq k/h \cap k$ is CR-solvable. Hence h + k is CR-solvable. So, there exists a unique CR-solvable LCR-ideal $r^* = r^*(g)$ which contains all the CR-solvable LCR-ideals; r^* is said the CR-radical of g.

Proposition 3.4.1 The LCR-algebra g is CR-solvable if and only if g coincides with r*.

Definition 3.4.2 A LCR-algebra g is said CR-semisimple if r* vanishes.

Since \mathbf{q} is an ideal, we know that its radical $\mathbf{r}(\mathbf{q})$ is given by the intersection of $\mathbf{r}(\mathbf{g})$ with \mathbf{q} , itself. Furthermore, when \mathbf{q} is a LCR-structure, we have the

Lemma 3.4.3 The radical $\mathbf{r}(\mathbf{q})$ is given by the intersection of \mathbf{q} with the CR-radical $\mathbf{r}^*(\mathbf{g})$.

Proof: the intersection $\mathbf{r}^*(\mathbf{g}) \cap \mathbf{q}$ is a solvable ideal of \mathbf{q} , so $\mathbf{r}^*(\mathbf{g}) \cap \mathbf{q} \subseteq \mathbf{r}(\mathbf{q}) = \mathbf{r}(\mathbf{g}) \cap \mathbf{q}$. When $\mathbf{r}(\mathbf{q})$ vanishes, $\mathbf{r}^*(\mathbf{g}) \cap \mathbf{q}$ vanishes, too. While, when $\mathbf{r}(\mathbf{q})$ is not zero, $\mathbf{r}(\mathbf{g})$ is a CR-solvable LCR-ideal. Hence, $\mathbf{r}(\mathbf{g}) \subseteq \mathbf{r}^*(\mathbf{g})$ and the intersections with \mathbf{q} coincide. \blacksquare

Lemma 3.4.4 The intersection $\mathbf{r}^* \cap \tilde{\mathbf{q}}$ coincides with $\mathbf{r}(\tilde{\mathbf{q}})$. Moreover. $\mathbf{r}(\tilde{\mathbf{q}})$ is a LCR-ideal.

Proof: since $\mathbf{r}^* \cap \mathbf{q}$ is solvable, $\mathbf{r}^* \cap \tilde{\mathbf{q}}$ is solvable, so $\mathbf{r}^* \cap \tilde{\mathbf{q}} \subseteq \mathbf{r}(\tilde{\mathbf{q}}) = \mathbf{r}(\mathbf{g}) \cap \tilde{\mathbf{q}}$. Furthermore, $\mathbf{r}(\tilde{\mathbf{q}}) \cap \mathbf{q}$ does not vanish and $\mathbf{r}(\tilde{\mathbf{q}})$ is a solvable LCR-ideal. Finally, $\mathbf{r}(\tilde{\mathbf{q}}) \subseteq \mathbf{r}^*$. By the above computation, $\mathbf{r}(\tilde{\mathbf{q}})$ is a τ -stable ideal of \mathbf{g} . Otherwise, $\mathbf{r}(\tilde{\mathbf{q}}) \cap \mathbf{q} = \mathbf{r}^* \cap \mathbf{q}$ which does not vanish, by definition. So, $\mathbf{r}(\tilde{\mathbf{q}})$ is a LCR-ideal.

Lemma 3.4.5 When the CR-radical r*is included in the radical r, they coincide.

Theorem 3.4.6 The LCR-algebra g is CR-semisimple if and only if q is semisimple.

Proof: the radical of q vanishes if and only if the CR-radical of g does. ■

When the ideal \mathbf{q} is semisimple, the direct sum $\tilde{\mathbf{q}} = \mathbf{q} \odot \overline{\mathbf{q}}$ is semisimple, too. The vice versa is also true. Hence, the LCR-algebra \mathbf{g} is CR-semisimple if and only if $\tilde{\mathbf{q}}$ is semisimple.

Now, we have all the elements to give a result analogous of Theorem 3.3.2. The LCR-structure of a CR-semisimple LCR-algebra may be seen as the LCR-structure of a semisimple subalgebra, as well as, in that case, the LCR-structure of a CR-solvable LCR-algebra was seen as a LCR-structure of the solvable radical.

Proposition 3.4.7 Let g be a CR-semisimple LCR-algebra. Then, there exists a Levi-subalgebra s which admits q as LCR-structure and it is given the decomposition $g = r \oplus \tilde{q} \oplus \tilde{q}^{\perp s}$, where $\tilde{q}^{\perp s}$ is the orthogonal of \tilde{q} with respect to the Killing form of s.

Vice versa, by Theorem 2.4.3, a LCR-structure \mathbf{q} of a Levi subalgebra \mathbf{s} is a LCR-structure on the whole \mathbf{g} if $[\mathbf{q}, \mathbf{r}]$ vanishes.

Theorem 3.4.8 The semisimple LCR-structures \mathbf{q} are the LCR-structures of a Levi subalgebra \mathbf{s} which are Levi-flat CR-structures of the centralizer of \mathbf{r} , $c(\mathbf{r})$.

Proposition 3.4.9 The CR-radical \mathbf{r}^* is invariant under all the CR-derivations; the CR-quotient \mathbf{g}/\mathbf{r}^* is CR-semisimple.

Proof: a CR-derivation D is an element of $Der(\mathbf{g}; \mathbf{q})$, hence exp(tD) is a CR-automorphism and $exp(tD)\mathbf{r}^* = \mathbf{r}^*$, so $D\mathbf{r}^* \subseteq \mathbf{r}^*$.

The projection $\pi: \mathbf{g} \to \mathbf{g}/\mathbf{r}^*$ is a CR-epimorphism. Take a CR-solvable LCR-ideal $\mathbf{h} \subseteq \mathbf{g}/\mathbf{r}^*$. Then $\pi^{-1}(\mathbf{h})$ is a CR-solvable LCR-ideal. So $\mathbf{r}^* \subseteq \pi^{-1}(\mathbf{h}) \subseteq \mathbf{r}^*$, and $\mathbf{h} = \{0\}$, which means that the CR-radical $\mathbf{r}^*(\mathbf{g}/\mathbf{r}^*(\mathbf{g}))$ vanishes.

Proposition 3.4.10 Let h be a LCR-ideal. Then $\mathbf{r}^*(\mathbf{h}) = \mathbf{r}^*(\mathbf{g}) \cap \mathbf{h}$.

Proof: let us consider $[\mathbf{r}^*(\mathbf{h}), \mathbf{g}]$. We may easily compute that it is a CR-solvable LCR-ideal of \mathbf{h} . So $[\mathbf{r}^*(\mathbf{h}), \mathbf{g}]$ is included in $\mathbf{r}^*(\mathbf{h})$ and $\mathbf{r}^*(\mathbf{h})$ is a CR-solvable LCR-ideal of \mathbf{g} . Hence $\mathbf{r}^*(\mathbf{h})$ is contained in $\mathbf{r}^*(\mathbf{g})$ and $\mathbf{r}^*(\mathbf{h}) \subseteq \mathbf{r}^*(\mathbf{g}) \cap \mathbf{h} \subseteq \mathbf{r}^*(\mathbf{h})$.

Theorem 3.4.11 Let g be a CR-semisimple LCR-algebra, then any LCR-ideal is CR-semisimple. Vice versa, if there exists a LCR-ideal h containing q which, as LCR-algebra, is CR-semisimple, then g is CR-semisimple.

Proof: when $\mathbf{r}^*(\mathbf{g})$ vanishes, by the above Proposition, $\mathbf{r}^*(\mathbf{h})$ vanishes, too. Consider, now, \mathbf{h} such that $\mathbf{q} \subseteq \mathbf{h} \subseteq \mathbf{g}$ and \mathbf{h} be CR-semisimple. Then \mathbf{q} is semisimple and \mathbf{g} is CR-semisimple.

Let S^* be the set of the LCR-ideals \mathbf{n} such that $\rho(x)$ is CR-nilpotent, $\forall x \in \mathbf{n}$. In particular, when \mathbf{n} is in S^* , \mathbf{n} is an ideal such that $\rho(x)|_W$ is nilpotent.

Take the representation $\rho_W: \mathbf{g} \to \mathbf{gl}(W): x \mapsto \rho(x)|_W$ with the associated set S_W of the ideals \mathbf{n} such that $\rho_W(x)$ is nilpotent. Then $S^* \subseteq S_W$ and, by the existence of the nilradical, there exists an elemente $\mathbf{n}_W \in S_W$ which contains all the elements of S_W . In particular \mathbf{n}_W contains all the elements of S^* . Thus $\mathbf{n}_W \cap \mathbf{q}$ does not vanish and $\mathbf{n}_W = \overline{\mathbf{n}_W}$. So, \mathbf{n}_W is a LCR-ideal and it is in S^* . Such a result is exposed in the

Proposition 3.4.12 Given a LCR-algebra g and an its finite-dimensional LCR-representation ρ , there exists a unique element $\mathbf{n}^* \in S^*$ which contains all the elements of S^* .

Definition 3.4.13 A CR-nilideal m of g is a LCR-ideal such that ad_x is CR-nilpotent, $\forall x \in m$. There exists a unique CR-nilideal n^* which contains all the CR-nilideal. It is said the CR-nilradical of g.

It is not difficult to show that n^* is contained in r^* ; finally any CR-isomorphism of r^* let n^* invariant.

Proposition 3.4.14 Let h be a LCR-ideal, then $n^*(h)$ is a LCR-ideal and coincides with $n^*(g) \cap h$.

The CR-nilradical of ${\bf g}$ and the one of ${\bf r}^*({\bf g})$ coincide. Moreover, we have the

Proposition 3.4.15 The following equivalences are true:

1.
$$n^*(g) = n^*(r^*(g));$$

2.
$$\mathbf{n}^*(\mathbf{g}) = \{x \in \mathbf{r}^* : ad_x \text{ is } CR\text{-nilpotent}\}.$$

Proof: since $\mathbf{n}^*(\mathbf{g}) \subseteq \mathbf{r}^*(\mathbf{g})$, then $\mathbf{n}^*(\mathbf{g}) \subseteq \mathbf{n}^*(\mathbf{r}^*(\mathbf{g}))$; while $\mathbf{n}^*(\mathbf{r}^*(\mathbf{g}))$ is included in $\mathbf{n}^*(\mathbf{g})$ by definition. The second part of the proof is a consequence of Theorem 3.3.10.

Corollary 3.4.16 If g is a CR-solvable LCR-algebra, the CR-nilradical $\mathbf{n}^*(\mathbf{g})$ is the set of all the elements x such that ad_x is CR-nilpotent. Moreover, $\mathcal{D}\mathbf{g}$ is contained in $\mathbf{n}^*(\mathbf{g})$.

Proposition 3.4.17 Any CR-derivation of g maps \mathbf{r}^* into \mathbf{n}^* . Hence $[\mathbf{r}^*, \mathbf{g}] \subseteq \mathbf{n}^*$.

Proof: let $A \in Der^*(\mathbf{g})$ and $\mathbf{g}' = \mathbf{g} \oplus \mathbf{C}$. Define $[(x,c),(x',c')]_A = ([x,x']+c'Ax-cAx',0)$. Then $(g',[,]_A)$ is a Lie-algebra; the ideal $\mathbf{q} \oplus \{0\}$ is a LCR-structure of \mathbf{g}' ; and $\mathbf{r}' = \mathbf{r}^* \oplus \mathbf{C}$ is a CR-solvable LCR-ideal. Moreover, \mathbf{n}' is a LCR-ideal of \mathbf{r}' . Hence $\mathcal{D}\mathbf{r}' \subseteq \mathbf{n}'$ and $\mathcal{D}\mathbf{r}' \cap (\mathbf{r}^* \oplus \{0\}) \subseteq \mathbf{n}' \cap (\mathbf{r}^* \oplus \{0\}) = \mathbf{n}^* \oplus \{0\}$. Of course, $\mathbf{r}^* \oplus \{0\}$ is an ideal of \mathbf{g}' and so. $\forall x \in \mathbf{r}^*, (Ax,0) = [(x,0),(0,1)] \in \mathcal{D}\mathbf{r}' \cap (\mathbf{r}^* \oplus \{0\}) \subseteq \mathbf{n}^* \oplus \{0\}$; which means that $A\mathbf{r}^* \subseteq \mathbf{n}^*$. ■

3.5 Cartan's criteria.

Given a LCR-structure \mathbf{q} , an associated representation on $\tilde{\mathbf{q}}$ is introduced, In fact, since $\tilde{\mathbf{q}}$ is an ideal, ad_x maps $\tilde{\mathbf{q}}$ in $\tilde{\mathbf{q}}$, for all x in \mathbf{g} . Thus, we define the representation $\psi: \mathbf{g} \to \mathbf{gl}(\tilde{\mathbf{q}})$ as $\psi(x) \doteq ad_x|_{\tilde{\mathbf{q}}}$.

Hence, there exists a unique maximal ideal \mathbf{n}_{ψ} such that $\psi(x)$ is nilpotent, $\forall x \in \mathbf{n}_{\psi}$, [VA]. Thanks to Theorem 3.4.12, \mathbf{n}^* coincides with \mathbf{n}_{ψ} .

Now, let us consider the symmetric bilinear form

$$B^{\psi}(x,y) = tr(\psi(x), \psi(y)),$$

with the associated ideal

$$g^{\perp_{\psi}} = \{ x \in g : B^{\psi}(x, y) = 0, \forall y \in g \}.$$

By a classical result, $[g^{\perp_{v}}, g] \subseteq n_{\psi}$. Then, we have the

Lemma 3.5.1 The CR-nilradical n_{ψ} is included in $g^{\perp_{\psi}}$.

Proof: take x in \mathbf{n}_{ψ} . Then $\psi(x)$ is nilpotent, so $tr(\psi(x)D) = 0$, where D is a derivation of $\tilde{\mathbf{q}}$. In particular, $tr(\psi(x)\psi(y)) = 0$, for all $y \in \mathbf{g}$.

Lemma 3.5.2 When Q is an element of $\tilde{\mathbf{q}}$, the numbers $B^{\psi}(x,Q)$ and B(x,Q) coincide, for all x in \mathbf{g} .

Proof: first of all, remark that the map $ad_x \circ ad_Q$ sends g into \tilde{q} . Thus, we compute

$$B(x,Q) = tr(ad_x \circ ad_Q) = tr(ad_x \circ ad_Q)|_{\tilde{\mathbf{q}}} =$$

$$= tr(ad_x \circ ad_Q|_{\tilde{\mathbf{q}}}) = tr(ad_Q|_{\tilde{\mathbf{q}}} \circ ad_x) =$$

$$= tr(ad_Q|_{\tilde{\mathbf{q}}} \circ ad_x)|_{\tilde{\mathbf{q}}} = tr(ad_Q|_{\tilde{\mathbf{q}}} \circ ad_x|_{\tilde{\mathbf{q}}}) =$$

$$= B^{\psi}(x,Q). \quad \blacksquare$$

Now, we have all the elements to proof the Cartan's criteria.

Theorem 3.5.3 The LCR-algebra g is CR-solvable if and only if the expression $B^{\psi}(x, [y, z])$ vanishes identically.

Proof: suppose that **g** is CR-solvable. Then \mathcal{D} **g** is a subset of the CR-nilradical \mathbf{n}^* , which is contained in $\mathbf{g}^{\perp_{\psi}}$. So $B^{\psi}(x,[y,z]) = 0, \forall x,y,z \in \mathbf{g}$.

Vice versa consider the case in which $B^{\psi}(x,[y,z])$ vanishes identically. Then, $\mathcal{D}\mathbf{g}$ is contained in $\mathbf{g}^{\perp_{\psi}}$ and $\mathcal{C}\mathcal{D}\mathbf{g} = [\mathcal{D}\mathbf{g},\mathcal{D}\mathbf{g}] \subseteq [\mathbf{g}^{\perp},\mathbf{g}] \subseteq \mathbf{n}_{\psi} = \mathbf{n}^{*}$. So $\mathcal{C}\mathcal{D}\mathbf{g}$ is a CR-nil-ideal. Thus, $\mathcal{D}\mathbf{g}$ is a CR-nil-ideal, and \mathbf{g} is CR-solvable.

Theorem 3.5.4 The LCR-algebra g is CR-semisimple if and only if B^{ψ} is nonsingular.

Proof: in an equivalent way, we shall show that $\mathbf{r}^* \neq \{0\}$ if and only if $\mathbf{g}^{\perp_{\psi}} \neq \{0\}$.

Let \mathbf{r}^* do not vanish. When $[\mathbf{r}^*, \mathbf{g}] \neq \{0\}$, then $\mathbf{g}^{\perp_{\psi}}$ does not vanish. In fact, it contains \mathbf{n}^* which contains $[\mathbf{r}^*, \mathbf{g}]$; otherwise $[\mathbf{r}^*, \mathbf{g}] = \{0\}$ means that \mathbf{r}^* is contained in the centre of \mathbf{g} , $\zeta(\mathbf{g})$. In particular, \mathbf{r}^* coincides with $\zeta(\mathbf{g})$ and then $\mathbf{g}^{\perp_{\psi}} \supseteq \mathbf{n}^* = \mathbf{r}^* \neq \{0\}$.

Vice versa, let \mathbf{r}^* be vanishing. So, $\mathbf{r}(\mathbf{q})$ is null and $\mathbf{Der}(\mathbf{q}) = ad_{\mathbf{q}}$. A trivial consequence is that

$$\forall x \in \mathbf{g}, \exists ! Q_x \in \tilde{\mathbf{q}} : \psi(x) = \psi(Q_x).$$

Suppose, that x is in $\mathbf{g}^{\perp_{\psi}}$. Hence, Q_x is in $\mathbf{g}^{\perp_{\psi}}$, too; which means that $\mathbf{g}^{\perp_{\psi}}$ is a LCR-ideal. If $\mathbf{g}^{\perp_{\psi}}$ is not zero, it is a LCR-ideal on which

 B^{ψ} vanishes identically. So $\mathcal{D}\mathbf{g}^{\perp_{\psi}}$ is CR-nilpotent and $\mathbf{g}^{\perp_{\psi}}$ is CR-solvable. Thus, $\mathbf{r}^* \supseteq \mathbf{g}^{\perp_{\psi}}$, that is a contradiction. So, if \mathbf{r}^* vanishes, $\mathbf{g}^{\perp_{\psi}}$ vanishes.

Proposition 3.5.5 If the only LCR-ideals of g are the trivial ones, (i.e., g, $\tilde{q} = q \oplus \overline{q}$, and $\{0\}$), g is CR-semisimple.

Proof: first of all consider the case in which $\tilde{\mathbf{q}}^{\perp_{\psi}}$ is not a LCR-ideal, then $\forall Q \in \mathbf{q}$, there are $Q_1, Q_2 \in \mathbf{q}$ such that $B(Q, Q_1 + \overline{Q_2}) \neq 0$, while $B(Q, \overline{Q_2}) = 0$, so $B(Q, Q_1) \neq 0$ and $\mathbf{q}^{\perp_{\mathbf{q}}} = \{0\}$. This means that \mathbf{q} is semisimple and hence, \mathbf{g} is CR-semisimple.

In the case that $\tilde{\mathbf{q}}^{\perp_{\psi}}$ is a LCR-ideal, $\tilde{\mathbf{q}}^{\perp_{\psi}}$ is or $\tilde{\mathbf{q}}$ either \mathbf{g} . In both the cases, $B|_{\tilde{\mathbf{q}}}$ vanishes identically and $\tilde{\mathbf{q}}$ is solvable. This implies that $\tilde{\mathbf{q}} \neq \mathcal{D}\tilde{\mathbf{q}}$ and any τ -stable linear subspace \mathbf{a} such that $\tilde{\mathbf{q}} \supseteq \mathbf{a} \supseteq \mathcal{D}\tilde{\mathbf{q}}$ is a LCR-ideal. So $\tilde{\mathbf{q}}$ should be one-dimensional, which false.

Definition 3.5.6 A LCR-algebra **g** is said to be CR-maximal if all its nontrivial LCR-ideals are contained in $\tilde{\mathbf{q}}$. A LCR-algebra **g** is said to be CR-simple if all its nontrivial LCR-ideals contain $\tilde{\mathbf{q}}$.

Definition 3.5.7 A chain of LCR-ideals is a family $\mathcal{H} = \{h_0 \subset h_1 \subset \ldots \subset h_p\}$ such that the first element h_1 is not contained in \tilde{q} .

All the elements of a chain are endowed of a CR-structure of positive codimension. When the algebra is CR-semisimple, the element h_1 is CR-maximal.

3.6 CR-semisimple LCR-algebras.

In this Section we discuss the main properties of CR-semisimple LCR-algebras. Since the form B^{ψ} is nonsingular, for any linear subspace \mathbf{a} , dim $\mathbf{g} = \dim \mathbf{a} + \dim \mathbf{a}^{\perp_{\psi}}$. This fact is useful in the study of the LCR-ideals of such LCR-algebras.

Lemma 3.6.1 Let g be a CR-semisimple LCR-algebra. If we consider a LCR-ideal h, we have the decompositions $\mathbf{g} = \mathbf{h} \odot \mathbf{h}^{\perp_{\psi}} = (\mathbf{h} \cap \mathbf{q}) \odot (\mathbf{h} \cap \mathbf{q})^{\perp_{\psi}} =$. Moreover, since $B^{\psi}([x,y],z) = B^{\psi}(x,[y,z])$, $\mathbf{h}^{\perp_{\psi}}$ is an ideal, whenever h is an ideal.

Lemma 3.6.2 A LCR-ideal h contains q if and only if $h^{\perp_{\psi}}$ does not intersect q.

Proof: when \mathbf{q} is included into \mathbf{h} , then $\mathbf{h}^{\perp_{\psi}}$ is contained in $\mathbf{q}^{\perp_{\psi}}$ which does not intersect \mathbf{q} .

Vice versa, let $\mathbf{h}^{\perp_{\psi}} \cap \mathbf{q}$ vanish. Consider $K = Q + Q^{\psi}$ in $\mathbf{h}^{\perp_{\psi}}$: where Q is in \mathbf{q} and Q^{ψ} is in $\mathbf{q}^{\perp_{\psi}}$. For any $H \in \mathbf{h}$, $[K, H] = [Q, H] + [Q^{\psi}, H]$ vanishes, in fact \mathbf{h} and $\mathbf{h}^{\perp_{\psi}}$ are disjoint ideals. Since $[Q, H] \in \mathbf{q}$ and $[Q^{\psi}, H] \in \mathbf{q}^{\perp_{\psi}}$, then $[Q, H] = [Q^{\psi}, H] = 0$. In particular Q is in $\mathbf{h}^{\perp_{\psi}}$. Thus, Q vanishes. Hence, $\mathbf{h}^{\perp_{\psi}} \subseteq \mathbf{q}^{\perp_{\psi}}$ and $\mathbf{q} \subseteq \mathbf{h}$.

Corollary 3.6.3 If h is a LCR-ideal, then or h contains q either $h^{\perp_{\psi}}$ is a LCR-ideal.

Theorem 3.6.4 Let g be a CR-semisimple LCR-algebra and h be a LCR-ideal. Then

- 1. $\mathbf{h}^{\perp_{\psi}}$ is a τ -stable ideal;
- 2. either h contains q or $h^{\perp_{\psi}}$ is a LCR-ideal;
- $\beta. [h, h^{\perp_{\psi}}] = \{0\};$
- 4. h is CR-semisimple;
- 5. g/h is CR-semisimple, whenever h does not contain q.

Proof: for the first assert, take x in $\mathbf{h}^{\perp_{\psi}}$. Then $B^{\psi}(\overline{x}, \mathbf{h}) = B^{\psi}(x, \mathbf{h})$ vanishes, and $\overline{x} \in \mathbf{h}^{\perp_{\psi}}$.

The second and the third points are given by the previous lemmas.

Let g be CR-semisimple, then q is semisimple and $h \cap q$ is a nonzero semisimple ideal of h, which means that h is CR-semisimple. Furthermore, $q/q \cap h$ is a semisimple LCR-structure of g/h. Thus g/h is CR-semisimple.

Corollary 3.6.5 Let g be a CR-semisimple LCR-algebra and h be an its LCR-ideal. If k is a LCR-ideal (resp. an ideal) of h, then k is a LCR-ideal (resp. an ideal) of g.

Corollary 3.6.6 If g is a CR-semisimple LCR-algebra, then g coincides with $\mathcal{D}g \odot \zeta(g)$.

Proof: take x in $(\mathcal{D}g)^{\perp_{\psi}}$ and y, z in g. Then $B^{\perp_{\psi}}([x, y], z) = B^{\perp_{\psi}}(x, [y, z]) = 0$. Thus, $(\mathcal{D}g)^{\perp_{\psi}}$ is contained in the centre $\zeta(g)$. Furthermore, take [x, y] in $\mathcal{D}g$ and z in $\zeta(g)$, hence $B^{\perp_{\psi}}([x, y], z) = B^{\perp_{\psi}}(x, [y, z]) = 0$, and $\mathcal{D}g$ is contained in $\zeta(g)^{\perp_{\psi}}$. Since $\mathcal{D}g$ is a LCR-ideal, the thesis follows.

Theorem 3.6.7 Let g be a LCR-algebra and h a LCR-ideal such that g/h is CR-semisimple, then the CR-radical is contained in h. Let φ : $g \to g_1$ be a CR-epimorphism, then $\varphi r^* = r_1^*$.

Proof: consider the canonical projection $\pi: g \to g/h$ and let r^* be not a subset of h. Then $\pi(r^*)$ would be a nonzero CR-solvable LCR-ideal, which is impossible.

Since g/r^* is CR-semisimple, $g_1/\varphi(r^*)$ is CR-semisimple. So, by the previous remark, $\varphi(r^*) \supseteq r_1^*$. By the other hand, $\varphi(r^*)$ is a CR-solvable LCR-ideal, so $\varphi(r^*) \subseteq r_1^*$.

Theorem 3.6.8 If g is a CR-semisimple LCR-algebra, then the Lie-algebra of its CR-derivations is given by $\operatorname{Der}^*(g) = ad(g) \odot \operatorname{Der}\zeta(g)$.

Proof: since $[D, ad_Q] = ad_{DQ}$, $ad(\mathbf{q})$ is an ideal of $\mathbf{Der}^*(\mathbf{g})$. Obviously, $ad(\mathbf{q}) \cap \overline{ad(\mathbf{q})}$ vanishes. So, $ad(\mathbf{q})$ is a LCR-structure of $\mathbf{Der}^*(\mathbf{g})$.

Moreover, $ad(\mathbf{g})$ is CR-semisimple. In fact $ad : \mathbf{g} \to ad(\mathbf{g})$ is a CR-epimorphism. Furthermore, $\mathbf{Der}^*(\mathbf{g})$ is CR-semisimple, too. Hence, $\mathbf{Der}^*(\mathbf{g})$ coincides with $ad(\mathbf{g}) \odot (ad(\mathbf{g}))^{\perp_{\psi}}$. Take, now, D in $(ad(\mathbf{g}))^{\perp_{\psi}}$. then $ad_{DX} = 0$, which means that $D\mathbf{g} \subseteq \zeta \mathbf{g}$. Let us define the subspaces

$$\mathcal{D}_1 \doteq \{D : D\mathbf{g} \subseteq \mathcal{D}\mathbf{g}\}$$

$$\mathcal{D}_2 \doteq \{D : D\mathbf{g} \subseteq \zeta(\mathbf{g})\}.$$

Since, $ad(\mathbf{g})$ is in \mathcal{D}_1 and $(ad(\mathbf{g}))^{\perp_{\psi}}$ in \mathcal{D}_2 , then $\mathbf{Der}^*(\mathbf{g}) = \mathcal{D}_1 + \mathcal{D}_2$. Moreover $\mathcal{D}_1 \cap \mathcal{D}_2$ vanishes, so $\mathcal{D}_1 = ad\mathbf{g}$ and $\mathcal{D}_2 = (ad\mathbf{g})^{\perp_{\psi}}$. Take now D in \mathcal{D}_2 , then $\mathcal{D}\mathbf{g} \subseteq \ker D$. Thus, we identify \mathcal{D}_2 with $\mathbf{Der}(\zeta(\mathbf{g}))$.

3.7 CR-maximal LCR-algebras.

In this Section, we study the *CR-maximal* LCR-algebras. We decompose a CR-semisimple LCR-algebra in factors, which are LCR-ideals, and consequently they are CR-semisimple (Theorem 3.7.4). Thus, we conclude with the classification of CR-maximal CR-semisimple LCR-algebras (Theorem 3.7.10).

Theorem 3.7.1 Let g be a CR-maximal LCR-algebra. Then there are the three following cases:

- 1. g admits a complex structure containing q;
- 2. q has codimension 1;
- 3. g is CR-semisimple.

Proof: remind that \mathbf{r}^* is a LCR-ideal, then if \mathbf{r}^* vanishes, \mathbf{g} is CR-semisimple. When \mathbf{r}^* coincides with \mathbf{g} , it must be $\mathbf{g} \neq \mathcal{D}\mathbf{g}$. When $\mathcal{D}\mathbf{g}$ is not a LCR-ideal, let us consider the linear subspace $\tilde{\mathbf{q}} + \mathcal{D}\mathbf{g}$. If it is all \mathbf{g} , then $\mathbf{h}_Q = \mathbf{C}Q + \mathbf{C}\overline{Q} + \mathcal{D}\mathbf{g}$ is a LCR-ideal, then $\mathbf{h}_Q = \mathbf{g}$ and $\mathbf{q} \cap \mathcal{D}\mathbf{g} \neq 0$, which is a contradiction. Otherwise, when $\tilde{\mathbf{q}} + \mathcal{D}\mathbf{g}$ is a proper subspace, it is a LCR-ideal and it must be $\mathcal{D}\mathbf{g} \subseteq \tilde{\mathbf{q}}$. So every τ -stable linear subspace containing $\tilde{\mathbf{q}}$ is a LCR-ideal. In this case, the codimension of \mathbf{q} or vanishes either is 1. Finally, if $\mathcal{D}\mathbf{g}$ is a LCR-ideal, $\tilde{\mathbf{q}} + \mathcal{D}\mathbf{g}$ is it and we argue as above.

Let \mathbf{r}^* be included in $\tilde{\mathbf{q}}$. Moreover, \mathbf{r}^* is the radical of $\tilde{\mathbf{q}}$ and of \mathbf{g} itself. Let us consider the two following case:

1) $\mathbf{r}^* \neq \tilde{\mathbf{q}}$; then there exists a Levi-subalgebra \mathbf{s} of \mathbf{g} such that $\tilde{\mathbf{q}} = \mathbf{r}^* \oplus \tilde{\mathbf{q}} \cap \mathbf{s}$ is the Levi-Mal'cev decomposition of $\tilde{\mathbf{q}}$. Let us define \mathbf{k} as

 $(\tilde{\mathbf{q}} \cap \mathbf{s})^{\perp_{\psi}}$ and $\mathbf{h} = \mathbf{r}^* \oplus (\mathbf{k} + \overline{\mathbf{k}})$ is a LCR-ideal, which is impossible. So \mathbf{q} is a complex structure.

2) $\mathbf{r}^* = \tilde{\mathbf{q}}$; consider a Levi-subalgebra \mathbf{s} of \mathbf{g} . When \mathbf{h} is an ideal of \mathbf{s} . $\mathbf{r}^* \oplus \mathbf{h} \oplus \overline{\mathbf{h}}$ is a LCR-ideal and hence $\mathbf{g} = \mathbf{r}^* \oplus \mathbf{h} \oplus \overline{\mathbf{h}}$. Finally, $\mathbf{h} \oplus \mathbf{q}$ is a complex structure containing \mathbf{q} .

If **g** is a CR-semisimple LCR-algebra, **q** is semisimple and we may write **q** as $\mathbf{q}_1 \oplus \ldots \mathbf{q}_k = \sum_{i \in K} \mathbf{q}_i$, where the \mathbf{q}_i are simple ideals of **q**. So we may consider two distinct families of LCR-ideals: the first ones contain **q**, the second ones do not.

Remark that, if g is not CR-maximal, there exist some LCR-ideals containing q. Let h be a LCR-ideal such that $\mathbf{h} \cap \mathbf{q} = \sum_{i \in J} \mathbf{q}_i$, then $\mathbf{h} \oplus \sum_{i \in K-J} \tilde{\mathbf{q}}_i$ is a LCR-ideal including $\tilde{\mathbf{q}}$. Via such LCR-ideals, we give the following decomposition for \mathbf{g} .

Proposition 3.7.2 Let g be a CR-semisimple LCR-algebra, then we may write $g = +_{i \in I} h_i$, where the h_i are CR-maximal LCR-ideals such that $h_i \cap h_j = \tilde{q}$.

Proof: take a LCR-ideal h of g such that $h \cap q = q$. Then h contains \tilde{q} . By Lemma 3.6.2, $h^{\perp_{\psi}}$ does not intersect \tilde{q} . Otherwise, $h' = \tilde{q} \oplus h^{\perp_{\psi}}$ is a LCR-ideal which verifies the following

$$g = h + h'$$

$$h \cap h' = \tilde{q}$$
.

If one considers a LCR-ideal k of h, one gets the decomposition g=k+k'+h' with the conditions $k\cap k'=k\cap h'=k'\cap h'=\tilde{q}$.

Remark that \mathbf{k}' is the sum of $\tilde{\mathbf{q}}$ and of the orthogonal of \mathbf{k} with respect of B^{ψ} in \mathbf{h} .

In this way, we construct some chains $\{\mathcal{H}_i\}_{i\in J}$ such that

$$g = +_{i \in J} h_i$$

$$\mathbf{h}_i \cap \mathbf{h}_j = \tilde{\mathbf{q}},$$

where any h_i is the last element of its chain. Hence, it is CR-maximal.

Such a construction does not depend on the beginning LCR-ideal h. In fact, if h_l were a CR-maximal LCR-ideal, with $l \notin J$, we have that $h_i \cap h_l$ is a LCR-ideal of g and there are two possible cases:

- 1. $\mathbf{h}_i \cap \mathbf{h}_l = \mathbf{h}_i$
- 2. $\mathbf{h}_i \cap \mathbf{h}_l = \tilde{\mathbf{q}}$.

When \mathbf{q} is simple, any LCR-ideal contains $\tilde{\mathbf{q}}$ and we have the above decomposition.

Now, suppose \mathbf{q} semisimple and write $\mathbf{q} = \mathbf{q}_1 \odot \ldots \odot \mathbf{q}_k$. Let us consider the sets $S_j = \{\mathbf{h} \text{ is a LCR-ideal } : \mathbf{h} \cap \mathbf{q} = \mathbf{q}_j\}$. Each S_j is notempty, since it contains $(\bigoplus_{i \neq j} \tilde{\mathbf{q}}_i)^{\perp_{\psi}}$.

Lemma 3.7.3 If h is in S_j , $h^{\perp_{\psi}} \cap q = \bigoplus_{i \neq j} q_i$

Proof: $h^{\perp_{\psi}} \cap \mathbf{q}$ is an ideal of \mathbf{q} , so it is sum of some \mathbf{q}_i . It is not \mathbf{q} , otherwise \mathbf{h} would not be a LCR-ideal. Moreover, $\mathbf{q} = \mathbf{h} \cap \mathbf{q} \oplus \mathbf{h}^{\perp_{\psi}} \cap \mathbf{q}$. So, we have the further decomposition, given by the

Theorem 3.7.4 If q is semisimple and it is decomposed as $q = q_1 \odot \ldots \odot q_k$, g is decomposed as $g = g_1 \odot \ldots \odot g_k$, where

1. each g_i is a CR-maximal LCR-ideal;

- 2. $\mathbf{g}_i \cap \mathbf{q} = \mathbf{q}_i$;
- 3. $g_i \cap g_l = \{0\}.$

Proof: let $g_1 \in S_1$ be CR-semisimple, then $g_1^{\perp_{\psi}}$ admits the LCR-structure $q_2 \odot \ldots \odot g_k$. By inductive hypothesis, $g_1^{\perp_{\psi}} = g_2 \odot \ldots \odot g_k$. where each g_i is a LCR-ideal of $g_1^{\perp_{\psi}}$ (and hence of g) such that $g_i \cap q = q_i$ and $g_i \cap g_l = \{0\}$. Since $g = g_1 \odot g_1^{\perp_{\psi}}$, the assert is proved.

Theorem 3.7.4 gives a decomposition of g, CR-semisimple, in CR-maximal LCR-ideals. Since each of them is CR-semisimple, in the last part of this Section, we shall describe the CR-maximal LCR-algebras which are CR-semisimple. Now on, g will be a CR-maximal CR-semisimple LCR-algebra.

Lemma 3.7.5 The ideal $\tilde{q}^{\perp_{\psi}}$ does not admit τ -stable ideals.

Proof: let $h = \overline{h}$ be an ideal of $\tilde{q}^{\perp_{\psi}}$. Then, it is an ideal of g. so $h^{\perp_{\psi}}$ includes \tilde{q} and it is a LCR-ideal. Since g is CR-maximal, either $h^{\perp_{\psi}}$ is g or is \tilde{q} . Hence, h is or zero either $\tilde{q}^{\perp_{\psi}}$.

Lemma 3.7.6 Let h be a nontrivial ideal of $\tilde{q}^{\perp_{\psi}}$. Then $\tilde{q}^{\perp_{\psi}} = h \odot \overline{h}$.

Proof: the subspaces $\mathbf{h} \cap \overline{\mathbf{h}}$ and $\mathbf{h} + \overline{\mathbf{h}}$ are τ -stable ideals of $\tilde{\mathbf{q}}^{\perp_{\psi}}$. When $\mathbf{h} \cap \overline{\mathbf{h}}$ is equal to $\tilde{\mathbf{q}}^{\perp_{\psi}}$, \mathbf{h} coincides with $\tilde{\mathbf{q}}^{\perp_{\psi}}$; when $\mathbf{h} + \overline{\mathbf{h}}$ vanishes, \mathbf{h} vanishes, too; in the case that $\mathbf{h} \cap \overline{\mathbf{h}}$ vanishes and $\mathbf{h} + \overline{\mathbf{h}} = \tilde{\mathbf{q}}^{\perp_{\psi}}$, \mathbf{h} is a complex structure of $\tilde{\mathbf{q}}^{\perp_{\psi}}$.

Proposition 3.7.7 Let g be a CR-maximal CR-semisimple LCR-algebra. Then q is either simple or a complex structure. In the last case, g is semisimple.

Proof: the ideal \mathbf{q} may be written as $\mathbf{q} = \mathbf{q}_1 \odot \ldots \odot \mathbf{q}_k$, where the \mathbf{q}_i are simple. In fact, it is semisimple. Then, $\mathbf{h}_1 \doteq \mathbf{q}_1 \odot \tilde{\mathbf{q}}^{\perp_{\psi}}$ is a LCR-ideal. If \mathbf{h}_1 is included in $\tilde{\mathbf{q}}$, $\tilde{\mathbf{q}}^{\perp_{\psi}}$ vanishes and $\mathbf{g} = \tilde{\mathbf{q}}$ is semisimple. Otherwise, \mathbf{h}_1 coincides with \mathbf{g} . Thus $\mathbf{q} = \mathbf{q}_1$ is simple.

Corollary 3.7.8 The only LCR-ideals of a CR-maximal CR-semisimple LCR-algebra g are $\{0\}$. \tilde{q} and g.

Lemma 3.7.9 A nonvanishing ideal h of $\tilde{\mathbf{q}}^{\perp_{\psi}}$ does not admit ideals. Hence, h is or one-dimensional either simple.

Proof: an ideal k of h is an ideal of $\tilde{\mathbf{q}}^{\perp_{\psi}}$. Thus, $\tilde{\mathbf{q}}^{\perp_{\psi}}$ coincides with $k \odot \overline{k}$ and k is equal to h.

Now, we classify the CR-maximal CR-semisimple LCR-algebra via the "unique" ideal \mathbf{h} of $\tilde{\mathbf{q}}^{\perp_{\psi}}$, which is either simple or abelian.

type	$\tilde{\mathbf{q}}^{\perp_\psi}$	g	$codim {f q}$	g is
I	{0}	$\operatorname{q} \odot \overline{\operatorname{q}}$	0	semisimple
II	$\mathrm{C} H \oplus \mathrm{C} \overline{H}$	$oldsymbol{q}\odot \overline{oldsymbol{q}}\odot CH\odot C\overline{H}$	2	reductive
	$CH = C\overline{H}$	$\mathrm{q}\odot\overline{\mathrm{q}}\odot\mathrm{C}H$	1	reductive
III	$\mathrm{h}\odot\overline{\mathrm{h}}$	$\operatorname{q} \odot \overline{\operatorname{q}} \odot \operatorname{h} \odot \overline{\operatorname{h}}$	$2 \dim \mathbf{h}$	semisimple
	$\mathrm{h}=\overline{\mathrm{h}}$	$\mathrm{q}\odot\overline{\mathrm{q}}\odot\mathrm{h}$	$\dim \mathbf{h}$	semisimple

Let us return to the CR-semisimple (not CR-maximal) case. Consider the decomposition in CR-maximal LCR-ideals given by Theorem 3.7.4: $\mathbf{g} = \odot_{i \in S} \mathbf{g}_i$, with $\mathbf{g}_i \cap \mathbf{q} = \mathbf{q}_i$. Then, divide S in three subsets S_1 , S_2 , S_3 , such that i is in S_1 if and only if \mathbf{g}_1 is of type I, and so on. Define $\mathbf{g}^I \doteq \odot_{i \in S_I} \mathbf{g}_i$, $\mathbf{g}^{II} \doteq \ldots$, $\mathbf{g}^{III} \doteq \ldots$ In particular, the above Table shows that

$$g^{I} = \bigoplus_{i \in S_{1}} \tilde{\mathbf{q}}_{i}$$

$$g^{II} = \bigoplus_{i \in S_{2}} (\tilde{\mathbf{q}}_{i} \odot \mathbf{C}H_{i} + \mathbf{C}\overline{H_{i}})$$

$$g^{III} = \bigoplus_{i \in S_{3}} (\tilde{\mathbf{q}}_{i} \odot \tilde{\mathbf{h}}_{i}).$$

We derive the following structure theorem for CR-semisimple LCR-algebras.

Theorem 3.7.10 Let g be a CR-semisimple LCR-algebra. Then

- i) q is contained in the semisimple LCR-ideal $\mathcal{D}g$;
- ii) g is reductive.

Moreover, a reductive Lie-algebra admits a LCR-structure with respect of which is CR-semisimple if and only if it is noncompact. Namely. the class of all the reductive Lie-algebras is the disjoint union of two classes: the class of compact Lie-algebras and the one of CR-semisimple LCR-algebras.

Proof: since $\tilde{\mathbf{q}}^{\perp_{\psi}} = \odot_{i \in S_2}(\mathbf{C}H_i \odot \mathbf{C}\overline{H_i}) \odot \odot_{i \in S_3}\tilde{\mathbf{h}}_i$, we compute

$$\mathcal{D}\tilde{\mathbf{q}}^{\perp_{\psi}} = \odot_{i \in S_3} \tilde{\mathbf{h}}_i$$

$$\zeta(\tilde{\mathbf{q}}^{\perp_w}) = \odot_{i \in S_2}(\mathbf{C}H_i \odot \mathbf{C}\overline{H_i}).$$

Otherwise, $\mathbf{g} = \mathcal{D}\mathbf{g} \odot \zeta(\mathbf{g})$. thus $\mathcal{D}\mathbf{g} = \tilde{\mathbf{q}} \odot \mathcal{D}\tilde{\mathbf{q}}^{\perp_{\psi}}$ is a semisimple LCR-ideal and $\zeta(\mathbf{g})$ coincides with $\zeta(\tilde{\mathbf{q}}^{\perp_{\psi}})$.

Finally, when g is compact $\mathcal{D}g$ is compact and semisimple, thus $\mathcal{D}g$ does not admit LCR-structures and g is not CR-semisimple. Vice versa, if g is a reductive noncompact Lie-algebra, $\mathcal{D}g$ admits LCR-structures. which are semisimple.

REDUCTIVE LIE-ALGEBRAS

COMPACT LIE-ALGEBRAS

CR-SEMISIMPLE LCR-ALGEBRAS

3.8 The CR-Levi decomposition.

This last Section is devoted to the decomposition of a LCR-algebra g as the semidirect sum by ad of its CR-radical and a CR-semisimple LCR-algebra. In fact, there is a result analogous to Levi-Mal'cev Theorem

(Theorem 3.8.6). In order to prove this Theorem, we have to introduce the CR-cohomology of a CR-semisimple LCR-algebra.

Let \mathbf{g} denote a CR-semisimple LCR-algebra. The element ω^{ψ} of the enveloppong algebra of \mathbf{g} associated to the CR-polynomial $\xi^{\psi}(X) = B^{\psi}(X, X)$ is said to be the Casimir CR-element of \mathbf{g} .

Proposition 3.8.1 The Casimir CR-element ω^{ψ} belongs to the centre of the universal enveloping algebra of g. Let $\{X_i\}$ be a basis for q. whose dual basis is $\{X^i\}$, then $\omega^{\psi} = \sum_i X_i X^i$.

Proposition 3.8.2 Let ρ be a representation of \mathbf{g} and \mathbf{k} be $(\ker \rho)^{\perp_{\upsilon}}$. Then ω^{ρ} belongs to the centre of the universal enveloping algebra of \mathbf{g} . Let $\{X_i\}$ and $\{X^i\}$ be two basis of $\mathbf{k} \cap \mathbf{q}$ such that $B(X_i, X^j) = \delta_i^j$, then $\omega^{\rho} = \sum_i X_i X^i$. In particular, $tr \rho(\omega^{\rho}) = \dim \mathbf{k} \cap \mathbf{q}$.

Remark that, when ρ is nontrivial, k is a nonvanishing LCR-ideal. More generally, if $\rho(q) \neq \{0\}$, then $k \cap q \neq \{0\}$.

Corollary 3.8.3 Let ρ be a representation of the CR-semisimple LCR-algebra ${\bf g}$ and let

$$V_n = \{ v \in V : \rho(\mathbf{g})v = 0 \}$$
$$V_r = +_{x \in \mathbf{g}} \rho(x)[V].$$

Then V is the direct sum of V_n and of V_r .

We now define the CR-cohomology groups: given a LCR-representation $\rho: \mathbf{g} \to \mathbf{gl}(V)$, let $V_{CR}^j(\mathbf{g}, \rho)$ be the set of the skew symmetric j-linear

maps F of $\mathbf{g} \times \ldots \times \mathbf{g}$ (j factors) in V such that $F(\mathbf{q} \times \mathbf{g} \times \ldots \times \mathbf{g}) \subseteq W$ and $F(c(\mathbf{q}) \times \mathbf{g} \times \ldots \times \mathbf{g}) = 0$. If we introduce the differential operator d, obviously it maps $V_{CR}^{j}(\mathbf{g}, \rho)$ in $V_{CR}^{j+1}(\mathbf{g}, \rho)$. So, we define the CR-cohomology groups $H_{CR}^{j}(\mathbf{g}, \rho)$ as the quotient $\ker d/Imd$ and we have the

Theorem 3.8.4 If g is CR-semisimple and ρ is an its nontrivial LCR-representation, then $H^1_{CR}(g,\rho)=H^2_{CR}(g,\rho)=\{0\}$.

The proof is analogous to the one in the semisimple case. In fact it is based on the condition $\mathbf{g} = \mathcal{D}\mathbf{g} \odot \zeta(\mathbf{g})$ and on the decomposition $C^j = C_n^j \oplus C_r^j$ (where $C^j(\mathbf{g}, \rho) = \{\theta \in V^j(\mathbf{g}, \rho) : d\theta = 0\}$).

Let, now, g be a generic LCR-algebra and r^* be its CR-radical. A Levi sub-LCR-algebra s^* is a sub-LCR-algebra such that $g = r^* \oplus_{ad} s^*$. This decomposition is said to be a CR-Levi-Mal'cev decomposition.

Lemma 3.8.5 A Levi sub-LCR-algebra is CR-semisimple. Moreover, its centre $\zeta(s^*)$ vanishes

Proof: let x be the generic element of \mathbf{g} decomposed as $x = R_x + S_x$, and π be the natural projection on \mathbf{s}^* . Since, there exists an element $R_Q \in \mathbf{q} \cap \mathbf{r}$, consider an element of \mathbf{q} of the form $Q = R_Q + S_Q$. Hence, $S_Q \in \mathbf{s}^* \cap \mathbf{q}$ which is not empty. So π is a CR-epimorphism, and $\mathbf{r}^*(\mathbf{s}^*) = \pi(\mathbf{r}^*) = \{0\}$.

Finally, suppose that $\mathbf{s}^* = \zeta(\mathbf{s}^*) \odot \mathcal{D}\mathbf{s}^*$. Thus $\mathbf{r}^* \odot \zeta(\mathbf{s}^*)$ is a LCR-ideal which is CR-solvable, since $\mathcal{D}(\mathbf{r}^* \odot \zeta(\mathbf{s}^*)) \subseteq \mathbf{r}^*$. Hence, $\mathbf{r}^* = \mathbf{r}^* \odot \zeta(\mathbf{s}^*)$ and $\zeta(\mathbf{s}^*)$ vanishes.

Theorem 3.8.6 Any LCR-algebra g admits a Levi sub-LCR-algebra s^* . If s^* is a Levi sub-LCR-algebra of g, then it is also a Levi sub-LCR-algebra of $\mathcal{D}g$ and the CR-Levi-Mal'cev decomposition of $\mathcal{D}g$ is $\mathcal{D}g = [r^*, g] \oplus_{ad} s^*$.

Proof: we make the proof by induction on $\dim \mathbf{r}^*$. If $\dim \mathbf{r}^* = 0$. g is a Levi sub-LCR-algebra. Now, let $\dim \mathbf{r}^* \geq 1$. There are two cases:

- 1. $\mathcal{D}\mathbf{r}^*$ is a LCR-ideal. Hence, $\mathbf{g}' = \mathbf{g}/\mathcal{D}\mathbf{r}^*$ is a LCR-algebra and $\pi(\mathbf{r}^*)$ is its CR-radical (where π is the natural projection). By the induction hypothesis, \mathbf{g}' admits a Levi sub-LCR-algebra \mathbf{s}' . Let us denote $\pi^{-1}(\mathbf{s}')$ as \mathbf{s}_0 . Then $\mathbf{g} = \mathbf{r}^* + \mathbf{s}_0$ and $\mathbf{q} \cap \mathcal{D}\mathbf{r}^* = \mathbf{q} \cap \mathbf{r}^* \cap \mathbf{s}_0$. Finally $\mathcal{D}\mathbf{r}^* \cap \mathbf{q}$ is a CR-solvable LCR-ideal of \mathbf{s}_0 and $\mathbf{s}_0/\mathcal{D}\mathbf{r}^*$ is isomorphic to \mathbf{s}' . Hence, $\mathcal{D}\mathbf{r}^*$ is the CR-radical of \mathbf{s}_0 . Since $\dim \mathcal{D}\mathbf{r}^* < \dim \mathbf{r}^*$, \mathbf{s}_0 admits a Levi sub-LCR-algebra \mathbf{s} such that $\mathbf{s}_0 = \mathcal{D}\mathbf{r}^* \oplus_{ad} \mathbf{s}$. Moreover $\mathbf{g} = \mathbf{r}^* \oplus_{ad} \mathbf{s}$ and \mathbf{s} is a Levi sub-LCR-algebra of \mathbf{g} .
- 2. $\mathcal{D}\mathbf{r}^*$ is not a LCR-ideal. Let us consider the subalgebra $\tilde{\mathbf{q}}$ and the Lie-epimorphism $\pi_{\mathbf{q}}$. Hence, $\pi_{\mathbf{q}}(\mathbf{r}(\tilde{\mathbf{q}})) = \mathbf{r}(\mathbf{q})$, so $\mathbf{r}(\tilde{\mathbf{q}}) = \mathbf{r}(\mathbf{q}) \oplus \mathbf{r}(\overline{\mathbf{q}})$. Moreover, $\mathcal{D}\mathbf{r}(\tilde{\mathbf{q}}) = \mathcal{D}\mathbf{r}(q) \oplus \mathcal{D}\mathbf{r}(\overline{\mathbf{q}}) \subseteq \mathcal{D}\mathbf{r}^* \cap \mathbf{q} \oplus \mathcal{D}\mathbf{r}^* \cap \overline{\mathbf{q}}$ and $\mathbf{r}(\tilde{\mathbf{q}})$ is abelian.

The Lie-algebra $\mathbf{g}_1 = \mathbf{g}/\mathbf{r}(\tilde{\mathbf{q}})$ admits the LCR-structure $\mathbf{q}_1 = \mathbf{q}/\mathbf{r}(\mathbf{q})$ which is semisimple. Consider a linear map $\mu : \mathbf{g}_1 \to \mathbf{g}$ such that $\pi \circ \mu = id$, $\mu \mathbf{q}_1 \subseteq \mathbf{q}$ and $\mu \tau_1 = \tau \mu$. Let us define $\rho : \mathbf{g}_1 \to \mathbf{gl}(\mathbf{r}(\tilde{\mathbf{q}})) : X_1 \mapsto ad_{\mu(X_1)}|_{\mathbf{r}(\tilde{\mathbf{q}})}$. Since $\mathbf{r}(\tilde{\mathbf{q}})$ is abelian ρ is well defined and it is a LCR-representation.

Now, define $\theta(x,y) = [\mu x, \mu y] - \mu([x,y])$. We may easily compute

that $\theta(x,y)$ belongs to $\mathbf{r}(\tilde{\mathbf{q}})$; $d\theta$ vanishes; $\theta(x,y)=0$, when x is in $\zeta(\mathbf{g}_1)$; and $\theta(x,Q)$ belongs to $\mathbf{r}(\mathbf{q})$. These facts mean that θ is in $H^2_{CR}(\mathbf{g},\rho)$ which vanishes. So, there exists a linear map $\nu:\mathbf{g}_1\to\mathbf{r}(\tilde{\mathbf{q}})$ which maps \mathbf{q}_1 into \mathbf{q} and such that $\theta=d\nu$. The map $\lambda=\mu-\nu$ is a CR-homomorphism such that $\pi\circ\lambda=id$. Hence $\mathbf{s}^*=\lambda\mathbf{g}_1$ is a sub-LCR-algebra such that $\mathbf{g}=\mathbf{r}^*\oplus_{ad}\mathbf{s}^*$.

Now, let $\mathbf{p} = [\mathbf{r}^*, \mathbf{g}]$. Then $\mathcal{D}\mathbf{g} = \mathbf{p} + [\mathbf{s}^*, \mathbf{s}^*]$. Since \mathbf{s}^* is a Levi sub-LCR-algebra it is $\mathcal{D}\mathbf{g} = \mathbf{p} + \mathbf{s}^*$ and $\mathbf{p} \cap \mathbf{s}^* \subseteq \mathbf{r}^* \cap \mathbf{s}^* = \{0\}$. Moreover, since $\mathcal{D}\mathbf{g}$ is a LCR-ideal, $\mathbf{r}^*(\mathcal{D}\mathbf{g}) = \mathcal{D}\mathbf{g} \cap \mathbf{r}^*$.

Finally, the CR-version of Harish-Chandra Theorem may be proved as well as the classical one.

Theorem 3.8.7 Let g be a LCR-algebra and \mathbf{r}^* be its CR-radical. If \mathbf{s}_1^* and \mathbf{s}_2^* are Levi sub-LCR-algebras, there exists a CR-automorphism φ such that $\varphi \mathbf{s}_1^* = \mathbf{s}_2^*$.

Corollary 3.8.8 If s^* is a Levi sub-LCR-algebra and s is a CR-semi-simple sub-LCR-algebra. Then there exists a CR-automorphism φ such that $\varphi s \subseteq s^*$.

3.9 Appendix.

1. For reasons of simplicity, we developed the structure theory of LCR-algebras in the complex terms. As we have remarked in Chapter 1. the more geometrical approach would be the real one. Thus, we translate the most interesting results about (\mathbf{g}, \mathbf{q}) , involving $(\mathbf{g}_0, \mathbf{p}, J)$.

Remind that a real subalgebra h_0 of g_0 is a sub-LCR-algebra if it satisfies the condition

$$J(h_0 \cap p) \subseteq h_0 \cap p \neq \{0\}.$$

Define \mathbf{h} as the complexified $\mathbf{h}_0 \otimes_{\mathbf{R}} \mathbf{C}$. Then, $\mathbf{h}_0 \cap \mathbf{p}$ vanishes if and only if $\mathbf{h} \cap \mathbf{q}$ does. Finally, a CR-homomorphism φ between two LCR-algebras $(\mathbf{g}_0, \mathbf{p}, J)$ and $(\mathbf{g}_0', \mathbf{p}', J')$ is a Lie-homomorphism which maps \mathbf{p} into \mathbf{p}' and which intertwines J and J'.

2. In this terms, we give the

Proposition. Let h_0 be a sub-LCR-algebra. Then the following statements are true

- 1. h_0 is CR-nilpotent if and only if $C^k h_0 \cap p$ vanishes;
- 2. h_0 is CR-solvable if and only if $\mathcal{D}^k h_0 \cap p$ vanishes.

Let us study, in particular, a CR-solvable LCR-algebra. About its LCR-structure, there is the

Theorem. Let (p, J) be a LCR-structure such that g_0 is a CR-

S8 Chapter 3

solvable LCR-algebra. Then \mathbf{p} is contained in the radical $\mathbf{r}(\mathbf{g_0})$. Vice versa, an evendimensional solvable ideal \mathbf{p} supports a unique complex structure J such that (\mathbf{p},J) is a LCR-structure and $\mathbf{g_0}$ is a CR-solvable LCR-algebra.

A characterisation of CR-solvable LCR-algebras is based on the fact that if h_0 is a CR-solvable LCR-ideal and g_0/h_0 is a CR-solvable LCR-algebra, then g_0 itself is CR-solvable. Two facts follow: the first consequence is that a LCR-algebra g_0 is CR-solvable if and only if its derived $\mathcal{D}g_0$ is CR-nilpotent. The second one is the existence of a maximal CR-solvable LCR-ideal r_0^* , said the CR-radical of g_0 . Obviously, a CR-solvable LCR-algebra coincides with its CR-radical. Then, we define CR-semisimple a LCR-algebra with vanishing CR-radical.

Lemma. Let g_0 be a LCR-algebra whose LCR-structure is (p, J). Then, the radical $\mathbf{r}(p)$ of p is given by the intersection $\mathbf{r}^* \cap \mathbf{p}$ and it is invariant under J.

Proof: since $\mathbf{r}^* \cap \mathbf{p}$ is a solvable ideal of \mathbf{p} , it is contained in the radical $\mathbf{r}(\mathbf{p}) = \mathbf{r}(\mathbf{g}_0) \cap \mathbf{p}$. By Proposition 5.8 of Chapter 2, $\mathbf{r}(\mathbf{p})$ is invariant under J. thus, if $\mathbf{r}(\mathbf{p})$ is not null, $\mathbf{r}(\mathbf{g}_0)$ is a CR-solvable LCR-ideal. Hence, $\mathbf{r}(\mathbf{g}_0)$ is contained in $\mathbf{r}^*(\mathbf{g}_0)$ and their intersection with \mathbf{p} coincide.

A direct consequence of the Lemma is that the LCR-algebra g_0 is CR-semisimple if and only if p is semisimple. In particular, a semisimple LCR-structure (p, J) is both a LCR-structure of a suitable Levi-

subalgebra and a Levi-flat CR-structure of the centralizer of r.

3. In order to introduce the Cartan's criteria, define the representation $\psi_0: \mathbf{g}_0 \to \mathbf{gl}(\mathbf{p}): x \mapsto ad_X|_{\mathbf{p}}$. Thus, $B^{\psi_0}(X,Y)$ is equal to $B^{\psi}(X,Y)$. for any X,Y in \mathbf{g}_0 . Hence, the criteria for CR-solvability and CR-semisimplicity are the following

- 1. the LCR-algebra g_0 is CR-solvable if and only if $B^{\psi_0}(X, [Y, Z])$ vanishes identically;
- 2. the LCR-algebra \mathbf{g}_0 is CR-semisimple if and only if B^{ψ_0} is non-singular.

A direct consequence of the second criterion is that a CR-semisimple LCR-algebra g_0 is decomposed as $g_0 = \zeta(g_0) \odot \mathcal{D}g_0$. In particular, we prove that g_0 is a noncompact reductive Lie-algebra. In order to do that, we define a CR-maximal LCR-algebra and we show that a CR-semisimple LCR-algebra is sum of CR-maximal CR-semisimple LCR-algebras.

Definition. A LCR-algebra $(\mathbf{g_0}, \mathbf{p}, J)$ is said to be CR-maximal if any LCR-ideal, different from $\mathbf{g_0}$ is contained in \mathbf{p} .

Notice that, if \mathbf{p} has codimension less then 1, \mathbf{g}_0 is a CR-maximal LCR-algebra. Vice versa, when \mathbf{g}_0 is a CR-maximal LCR-algebra, three cases are possible:

- 1. \mathbf{g}_0 admits a complex structure J_0 such that $J_0|_{\mathbf{p}} = J$;
- 2. p has codimension 1;

3. g_0 is CR-semisimple.

The third class of CR-maximal LCR-algebras takes a great importance in the structure theory of CR-semisimple LCR-algebras: let \mathbf{g}_0 be a CR-semisimple LCR-algebra. Since \mathbf{p} is a semisimple ideal, there are some simple ideals \mathbf{p}_i of \mathbf{p} such that $\mathbf{p} = \bigoplus_{i \in K} \mathbf{p}_i$. Moreover, each \mathbf{p}_i is J-stable. Consider, now, the set S_i of the LCR-ideal \mathbf{g}_i such that $\mathbf{g}_i \cap \mathbf{p} = \mathbf{p}_i$. Then, it is possible to choice some \mathbf{g}_i such that

1. g_i is a CR-maximal LCR-algebra;

2.
$$\mathbf{g}_i \cap \mathbf{g}_j = \{0\};$$

$$g = \odot_{i \in K} g_i.$$

Thus, via the CR-maximal LCR-ideals, we describe the whole CR-semisimple LCR-algebra. Of course, each of them is CR-semisimple, since it is a LCR-ideal.

Furthermore, the only LCR-ideals of a CR-maximal CR-semisimple LCR-algebra $(\mathbf{g}_0, \mathbf{p}, J)$ are the trivial ones: $\{0\}$, \mathbf{p} , \mathbf{g}_0 . Finally, the ideal $\mathbf{p}^{\perp_{\psi_0}}$ assumes one of the following forms;

$$\mathbf{p}^{\perp_{\psi_0}} = \left\{ \begin{array}{l} \{0\} \\ \mathbf{R}H \\ \mathbf{h}_0 \end{array} \right.$$

So, a CR-maximal LCR-algebra is reductive and its centre either is one-dimensional or vanishes. Let us return to the generic CR-semisimple LCR-algebra ($\mathbf{g}_0, \mathbf{p}, J$). We conclude showing that \mathbf{p} is contained in the semisimple LCR-ideal $\mathcal{D}\mathbf{g}_0$ and that \mathbf{g}_0 is reductive.

In fact, since p is semisimple, it coincides with its derived and so is included in $\mathcal{D}g_0$. Otherwise, the CR-maximal CR-semisimple LCR-ideal g_i (which are factors of g_0) may be divided in three families

$$I = \{g_i : g_i = p_i\}$$

$$II = \{g_i : g_i = p_i \oplus RH_i\}$$

$$III = \{g_i : g_i = p_i \oplus h_i\}.$$

Let \mathbf{g}_0^I denote the direct sum of the elements of I. In a similar way, we define \mathbf{g}_0^{II} and \mathbf{g}_0^{III} . By construction, \mathbf{g}_0^I and \mathbf{g}_0^{III} are semisimple and \mathbf{g}_0^{II} is reductive. Thus, the whole CR-semisimple LCR-algebra $\mathbf{g}_0 = \mathbf{g}_0^I \odot \mathbf{g}_0^{II} \odot \mathbf{g}_0^{III}$ is reductive. Moreover, $\mathcal{D}\mathbf{g}_0 = \mathbf{p} \oplus \oplus_i \mathbf{h}_i$ is semisimple.

CR-semisimple LCR-algebras.

4.1 Introduction to Chapter 4.

A CR-semisimple LCR-algebra \mathbf{g} is a LCR-algebra whose Killing CR-form B^{ψ} is nonsingular. The existence of such a nonsingular bilinear form is the foundation of the Theorem of existence of a Cartan sub-LCR-algebra \mathbf{h} . Essentially, a Cartam sub-LCR-algebra is a maximal CR-abelian sub-LCR-algebra, whose elements are semisimple. Moreover, the decomposition in CR-root spaces is given (Theorem 4.3.1). Such a decomposition implies that \mathbf{h} is a Cartan subalgebra (i.e. \mathbf{h} coincides with its own normalizer $\mathbf{n}(\mathbf{h})$) and it is abelian (Theorem 4.4.1). Thus an $ad_{\mathbf{h}}$ -stability result is proved. Hence, we give a decomposition of \mathbf{g} into the semidirect sum by ad of a semisimple ideal and a reductive subalgebra. In particular, when \mathbf{g} is a CR-semisimple LCR-algebra, then there exist an ideal \mathbf{h} containing $\tilde{\mathbf{q}}$ and a subalgebra \mathbf{k} contained in $\tilde{\mathbf{q}}$ such that $\mathbf{g} = \mathbf{h} \oplus_{ad} \mathbf{k}$. Moreover, if \mathbf{h} is decomposed as $\mathbf{h} = \tilde{\mathbf{q}} \odot \mathbf{h}_1 \odot \ldots \mathbf{h}_l$, then \mathbf{q}_0 coincides with $\mathbf{h}_1 \odot \ldots \odot \mathbf{h}_l \odot \mathbf{k}$ (Theo-

rem 4.4.9).

Since the roots of $\tilde{\mathbf{q}}$ and of \mathbf{q}_0 determines completely the LCR-algebra g (Theorem 4.5.1), the Lie-product may be described with respect of the CR-roots. Thus, we have the

$$[H, X_{\alpha}] = \alpha(H)X_{\alpha}$$

$$[X_{\alpha}, X_{\beta}] = \begin{cases} H_{\alpha} & \text{if } \beta = -\alpha \\ 0 & \text{if } \alpha + \beta \notin \Delta \\ N_{\alpha, \beta} X_{\alpha + \beta} & \text{if } \alpha + \beta \in \Delta. \end{cases}$$

Via these relations, the Chapter is concluded with a Theorem of existence of a real form \mathbf{g}_0^* of \mathbf{g} which admits, as an ideal, a compact real form \mathbf{p}^* of $\tilde{\mathbf{q}}$. So, we have given a bijection between the set of CR-semisimple Lie-algebras and the one of Lie-algebras which admit an even-dimensional semisimple compact ideal.

4.2 Cartan sub-LCR-algebras.

In this Chapter, \mathbf{g} denotes a CR-semisimple LCR-algebra whose LCR-structure is \mathbf{q} ; $\tilde{\mathbf{q}}$ is the direct sum $\mathbf{q} \odot \overline{\mathbf{q}}$. For this class of LCR-algebras, the definition of the Cartan sub-LCR-algebras is a direct generalization of the classical one.

Definition 4.2.1 A Cartan sub-LCR-algebra of a CR-semisimple LCR-algebra g is a sub-LCR-algebra h such that

- 1. h is a maximal CR-abelian sub-LCR-algebra in g;
- 2. ad_H is a semisimple map of g, $\forall H \in h$;
- 3. $h \cap q$ is a Cartan subalgebra of q.

Proposition 4.2.2 If h is a Cartan sub-LCR-algebra then $h \cap \tilde{q}$ is a Cartan subalgebra of \tilde{q} . Vice versa, let h be a maximal CR-abelian sub-LCR-algebra whose elements are semisimple. Then h is a Cartan sub-LCR-algebra, when $h \cap \tilde{q}$ is a Cartan subalgebra.

Proof: let h be a sub-LCR-algebra. Then, $h \cap q$ is a Cartan subalgebra of q if and only if $h \cap \overline{q}$ is Cartan subalgebra of \overline{q} . Thus, $h \cap \tilde{q} = h \cap q \odot h \cap \overline{q}$ is an abelian subalgebra of \tilde{q} . Let k be a Cartan subalgebra of \tilde{q} containing $h \cap \tilde{q}$. Since q and \overline{q} are ideals of \tilde{q} , the projections π_q and $\pi_{\overline{q}}$ are Lie-epimorphisms. So, $\pi_q k$ is an abelian subalgebra containing $h \cap q$. Hence, $\pi_q k$ and $k \cap q$ coincide. Finally, k coincides with $h \cap \tilde{q}$ and this one is a Cartan subalgebra. The vice versa has an analogous proof.

The Proposition 4.2.2 shows that in the Definition 4.2.1, the third statement may be substituted with

3'. $h \cap \tilde{q}$ is a Cartan subalgebra of \tilde{q} .

Let g be a generic Lie-algebra. Take an element x in g and denote with $\lambda_0 = 0, \lambda_1, \dots, \lambda_k$ the eigenvalues of ad_x . Then, g is decomposed as $\mathbf{g} = \sum_{i=0}^k \mathbf{g}(x, \lambda_i)$, where

$$g(x, \lambda) \doteq \{y : (ad_x - \lambda I)^k y = 0, \text{ for some k}\}.$$

Remark, finally, that $g(x, \lambda)$ is a subspace of \tilde{q} , whenever x is an element of \tilde{q} and $\lambda \neq 0$.

Lemma 4.2.3 Let g be a Lie-algebra, then

$$[g(H_0, \lambda), g(H_0, \mu)] \subseteq g(H_0, \lambda + \mu).$$

In particular, $h \doteq g(H_0, 0)$ is a subalgebra, $\forall H_0 \in g$.

Remind that H_0 is said to be a regular element when $\dim g(H_0, 0)$ is the minimum of $\dim(g(X, 0))$.

Lemma 4.2.4 When H_0 is regular, the subalgebra h is nilpotent. Moreover, if H_0 is a real element, h is τ -stable.

Now, the subspaces $g(x, \lambda)$ will be used in the following Lemmas, to prove the

Theorem 4.2.5 Let g be a CR-semisimple LCR-algebra. Then there exists a Cartan sub-LCR-algebra h of g.

Since \mathbf{q} is semisimple, any element $x \in \mathbf{g}$ is associated to a unique element $\varphi x \in \mathbf{q}$ such that ad_x and $ad_{\varphi x}$ coincide on \mathbf{q} . The map φ is a Lie-epimorphism and its restriction to \mathbf{q} is the identity. As well as we have constructed φ it is possible to define $\tilde{\varphi}$ with respect to $\tilde{\mathbf{q}}$.

Let us recall a classical

Proposition 4.2.6 Let $f: g \to g'$ be a Lie-epimorphism. Then f sends regular elements of g in regular elements of g' and the rank of g is greater or equal to the one of g'. [BO2]

Corollary 4.2.7 The epimorphism $\tilde{\varphi}$ maps g_{0r} in \tilde{q}_r .

Lemma 4.2.8 Let H_0 be in g_{0r} , then $h \cap \tilde{q}$ is a Cartan subalgebra for \tilde{q} . In particular h is a sub-LCR-algebra.

In fact $g(H_0, 0) \cap \tilde{q}$ coincides with $\{x \in \tilde{q} : ad_x^k H_0 = 0\}$. But, when x is in \tilde{q} , $ad_x^k H_0 = ad_x^k \tilde{\varphi} H_0$ and $\tilde{\varphi} H_0$ is in \tilde{q}_r . Hence, $g(H_0, 0) \cap \tilde{q} = \tilde{q}(\tilde{\varphi} H_0, 0)$, which is a Cartan subalgebra of \tilde{q} .

The Lie-epimorphism $\tilde{\varphi}$ maps h onto $h \cap \tilde{q}$. In fact, the proof of Lemma 4.2.8 shows that $\tilde{\varphi}h$ is included in $h \cap \tilde{q}$. While $h \cap \tilde{q} = \tilde{\varphi}(h \cap \tilde{q}) \subseteq \tilde{\varphi}h$.

Lemma 4.2.9 Let g be a CR-semisimple LCR-algebra, then h is CR-abelian.

Proof: take $x \in g(H_0, \lambda)$ and $y \in h$. Then $ad_x ad_y$ maps $g(H_0, \mu)$ in $g(H_0, \lambda + \mu)$: so its trace vanishes. Otherwise, since h is nilpotent. $B([H_1, H_2], H_3)$ vanishes, if each H_i is in h. Thus, $\mathcal{D}h$ is contained in g_{\perp} .

Finally, let $[H_1, H_2]$ be in $\mathcal{D}\mathbf{h} \cap \mathbf{q}$, then

$$B^{\psi}([H_1, H_2], x) = B([H_1, H_2], x) = 0,$$

for all x in g, and $[H_1, H_2]$ is in $g^{\perp_{\psi}}$ which vanishes.

Lemma 4.2.10 Let H_0 be in g_{0r} , then h is maximal CR-abelian.

Proof: suppose there exists a CR-abelian sub-LCR-algebra k containing h. Since $h \cap \tilde{q}$ is a Cartan subalgebra, $k \cap \tilde{q}$ coincides with $h \cap \tilde{q}$. Take $k_v \supseteq h_v$ such that $k = k \cap \tilde{q} \oplus k_v$ and $h = h \cap \tilde{q} \oplus h_v$. Consider

a linear subspace l such that $k_v = h_v \oplus l$. Then $k = h \oplus l$. Trivially, $ad_{H_0}|_{l}$ is invertible. Consider an element $L \in l$, then $ad_{H_0}L \in h$ and there is an integer k such that $ad_{H_0}^k L = 0$. So L vanishes.

Lemma 4.2.11 Let H_0 be in g_{0r} , then ad_x is a semisimple map of g, for any x in h.

Proof: let us consider the decomposition $\mathbf{g} = \sum_{\lambda} \mathbf{g}(H_0, \lambda)$ and the linear subspace $V_{\beta} = \{x : (ad_H - \beta(H)I)^k x = 0, \forall H \in \mathbf{h}\}$. Obviously, when $\beta(H_0)$ is equal to λ , V_{β} is included in $\mathbf{g}(H_0, \lambda)$. Hence, there exist some β_i such that $\mathbf{g} = \sum_i V_{\beta_i}$.

Take a generic element $H \in \mathbf{h}$. Then, there is given the canonical decomposition $ad_H = S + N$, where S is a semisimple derivation and N is a nilpotent one. Since S is a polinomial in ad_H , Sh is contained in \mathbf{h} . In a previous Lemma, we have shown that $ad_H|_{\mathbf{h}}$ is nilpotent; so, $S|_{\mathbf{h}}$ vanishes identically. Moreover, S is a derivation of \mathbf{g} and there is an element S in the centralizer of \mathbf{h} , such that $S = ad_S$.

Let us define the sub-LCR-algebras $\mathbf{h}_Z \doteq \mathbf{h} \oplus \mathbf{C}ReZ$ and $\mathbf{h}_Z' \doteq \mathbf{h} \oplus \mathbf{C}ImZ$. Since, $\mathcal{D}\mathbf{h}_Z = \mathcal{D}\mathbf{h}_Z' = \mathcal{D}\mathbf{h}$, they are CR-abelian and Z is in \mathbf{h} .

Furthermore, S maps each V_{β} in itself and $SX = \beta(H)X$, for all X in V_{β} . Take, now, an eigenvector $X' \in V_{\beta}$. Then $SX' = \beta(Z)X'$ and $\beta(H) = \beta(Z)$. Hence, $B(H, H') = \sum_{i} \beta_{i}(H)\beta_{i}(H')dimV_{\beta_{i}}$.

A direct computation shows that the subspace $\tilde{\mathbf{q}} \cap \mathbf{g}(H_0, \lambda)$ coincide with $\tilde{\mathbf{q}}(\tilde{\varphi}H_0, \lambda)$; while the map $\psi(H) = ad_H|_{\tilde{\mathbf{q}}}$ maps $V_\beta \cap \tilde{\mathbf{q}}$ in itself. Then, it is

$$B^{\psi}(H,H') = \sum_{i} \beta_{i}(H)\beta_{i}(H')dimV_{\beta_{i}} \cap \tilde{q}.$$

So $B^{\psi}(Z-H,H')$ vanishes. Thus, since $B^{\psi}(Z-H,x)=0$, for all $x\in g(H_0,\lambda)$, with $\lambda\neq 0$, it follows that H=Z.

The existence of a Cartan sub-LCR-algebra will be used, in the next Section, to decompose the CR-semisimple LCR-algebra \mathbf{g} in its CR-root spaces. This decomposition will show directly the existence of a real form \mathbf{g}_0^* which admits a compact ideal \mathbf{p}^* which is a real form of $\tilde{\mathbf{q}}$ (Theorem 4.5.4).

4.3 CR-root space decomposition.

Following the classical structure theory of semisimple Lie-algebras, [HE]. and via the existence of a Cartan Sub-LCR-algebra h, we study the structure theory of CR-semisimple LCR-algebras.

Let α be a linear function on the complex vector space h. With g^{α} we shall denote the linear subspace of g,

$$\mathbf{g}^{\alpha} \doteq \{x \in \mathbf{g} : [H, x] = \alpha(H)x, \forall H \in \mathbf{h}\}.$$

When g^{α} does not vanish, α is said to be a CR-root. In that case g^{α} is a CR-root space. Obviously, g^{0} coincides with h and $[g^{\alpha}, g^{\beta}] \subseteq g^{\alpha+\beta}$, as a consequence of the Jacobi identity. The set of CR-roots is denoted by Δ . In the terms of these notations, we give the

Theorem 4.3.1 Let h be a Cartan sub-LCR-algebra of g. Let Δ and $\tilde{\Delta}$ denote the set of CR-roots of g and the set of roots of \tilde{q} , respectively. The following statements are true:

- (i) $g = h \oplus \bigoplus_{\alpha \in \Delta} g^{\alpha}$.
- (ii) the CR-root spaces \mathbf{g}^{α} and \mathbf{g}^{β} are orthogonal under B, whenever $\alpha + \beta \neq 0$.
- (iii) the restriction of B^{ψ} to $\mathbf{h} \times \mathbf{h}$ is nonsingular. For each linear form α on \mathbf{h} there exists a unique element $H_{\alpha} \in \mathbf{h}$ such that $B^{\psi}(H, H_{\alpha}) = \alpha(H)$, for all $H \in \mathbf{h}$.
 - (iv) if $\alpha \in \Delta$, then $-\alpha \in \Delta$, $[\mathbf{g}^{\alpha}, \mathbf{g}^{-\alpha}] = \mathbf{C}H_{\alpha}$ and $\alpha(H_{\alpha}) \neq 0$.
 - (v) $dim \mathbf{g}^{\alpha} = 1$.

Proof: (i) if the subspaces h and \mathbf{g}^{α} , $\alpha \in \Delta$, were linearly dependents, there would be some $H \in \mathbf{h}$ and $X_{\alpha} \in \mathbf{g}^{\alpha}$ such that $0 = H + \sum_{\alpha} X_{\alpha}$. Choose H_1 in h such that $\alpha(H_1) \neq 0$, for all $\alpha \in \Delta$. Then,

$$0 = [H_1, H] + \sum_{\alpha} [H_1, X_{\alpha}] = [H_1, H] + \sum_{\alpha} \alpha(H_1) X_{\alpha}.$$

Hence, $[H_1, H]$ and $\alpha(H_1)$ vanish: so there is a contradiction. Thus, the sum $\mathbf{h} \oplus \bigoplus_{\alpha \in \Delta} \mathbf{g}^{\alpha}$ is direct.

Obviously, $[\mathbf{h} \cap \tilde{\mathbf{q}}, \mathbf{h}] \subseteq \mathbf{h}$ and $[\mathbf{h} \cap \tilde{\mathbf{q}}, \mathbf{g}^{\alpha}] \subseteq \mathbf{g}^{\alpha}$. Furthermore, $ad_{\mathbf{g}}(\mathbf{h} \cap \tilde{\mathbf{q}})$ is an abelian family of semisimple elements, so it is semisimple. In this hypothesis there exist some one-dimensional invariant subspaces \mathbf{g}_i such that $\mathbf{g} = \sum_i \mathbf{g}_i$; whenever, for any i there exists an α such that $\mathbf{g}_i \subseteq \mathbf{g}^{\alpha}$. This fact concludes the proof of (i).

- (ii) when X is in g^{α} and Y is in g^{β} , $ad_X ad_Y$ maps h in $g^{\alpha+\beta}$ and g^{γ} in $g^{\alpha+\beta+\gamma}$. In particular, its trace vanishes.
- (iii) let H_0 be such that $B^{\psi}(H_0, H) = 0$, for all H in h. Consider the generic element of \mathbf{g} , $X = H + \sum_{\alpha} X_{\alpha}$. Then, it is $B^{\psi}(H_0, X) = \sum_{\alpha} B^{\psi}(H_0, X_{\alpha})$. Let us compute the trace of $\psi(H_0)\psi(X_{\alpha}) : \tilde{\mathbf{q}} \to \tilde{\mathbf{q}}$. Remind that, since $\tilde{\mathbf{q}}$ is semisimple, it is decomposed as

$$\tilde{q} = h \cap \tilde{q} \oplus \oplus_{\tilde{\alpha} \in \tilde{\Delta}} \tilde{q}^{\tilde{\alpha}}.$$

Consider, now, the map $j: \tilde{\Delta} \to \Delta : \tilde{\alpha} \mapsto \tilde{\alpha} \circ \tilde{\varphi}$. Since $\tilde{\varphi}|_{\tilde{q}}$ is the identity, $\mathbf{g}^{j\tilde{\alpha}} \supseteq \tilde{\mathbf{q}}^{\tilde{\alpha}}$. Hence, $j\tilde{\alpha}$ is a CR-root of \mathbf{g} . By direct calculation, we show the following inclusions

$$\psi(H_0)\psi(X_{\alpha}) \begin{cases} h \cap \tilde{\mathbf{q}} \subseteq \mathbf{g}^{\alpha} \\ \tilde{\mathbf{q}}^{\tilde{\alpha}} = \{0\} \\ \tilde{\mathbf{q}}^{\tilde{\alpha}} \subseteq \mathbf{g}^{\alpha+j\tilde{\alpha}}. \end{cases}$$

Remark that $\tilde{\mathbf{q}}^{\tilde{\alpha}} \cap \mathbf{g}^{\alpha+j\tilde{\alpha}} \subseteq \mathbf{g}^{j\tilde{\alpha}} \cap \mathbf{g}^{\alpha+j\tilde{\alpha}} = \{0\}$. So, the trace of $\psi(H_0)\psi(X_{\alpha})$ vanishes and H_0 must be zero, since B^{ψ} is nondegenerate.

(iv) let X_{α} be in \mathbf{g}^{α} , while $\mathbf{g}^{-\alpha}$ vanishes. Then $B^{\psi}(X_{\alpha}, X)$ should vanish, for all $X \in \mathbf{g}$, which is false. Now, compute

$$B^{\psi}([X_{\alpha}, X_{-\alpha}], H) = B^{\psi}(X_{\alpha}, [X_{-\alpha}, H]) = B^{\psi}(X_{\alpha}, X_{-\alpha})B^{\psi}(H_{\alpha}, H).$$

Hence, $[X_{\alpha}, X_{-\alpha}] = B^{\psi}(X_{\alpha}, X_{-\alpha})H_{\alpha}$. Finally $\alpha(H_{\alpha}) = B^{\psi}(H_{\alpha}, H_{\alpha}) \neq 0$. And (iv) is proved.

The proof of (v) is the same as in the semisimple case, cf. [HE].

Corollary 4.3.2 The map $j: \tilde{\Delta} \to \Delta$ is injective.

102 Chapter 4

In fact, since \mathbf{g}^{α} is one-dimensional, $\mathbf{g}^{j\tilde{\alpha}} = \tilde{\mathbf{q}}^{\tilde{\alpha}}$. Now, let us divide the set of the CR-roots as follows: $\Delta = \Delta_0 \cup \Delta_1$, where $\Delta_0 \doteq \{\alpha : \mathbf{h} \cap \tilde{\mathbf{q}} \subseteq Ker\alpha\}$ and Δ_1 is its complement. It is not difficult to see that the map $j_1 : \Delta_1 \to \tilde{\Delta} : \alpha \mapsto \alpha|_{\mathbf{h} \cap \tilde{\mathbf{q}}}$ is injective; and that $\tilde{\mathbf{q}}^{j_1\alpha} = \mathbf{g}^{\alpha}$. Furthermore, there is the

Proposition 4.3.3 The sets Δ_1 and $\tilde{\Delta}$ have the same cardinality. Moreover $j_1 \circ j$ (resp $j \circ j_1$) is the identity of $\tilde{\Delta}$ (resp. Δ_1).

Proof: an easy computation shows that

$$j_{1} \circ j\tilde{\alpha} = j_{1}\tilde{\alpha} \circ \tilde{\varphi} = \tilde{\alpha} \circ \tilde{\varphi}|_{\tilde{\mathbf{q}}} = \tilde{\alpha}$$
$$\mathbf{g}^{j \circ j_{1} \alpha} = \tilde{\mathbf{q}}^{j_{1} \alpha} = \mathbf{g}^{\alpha} \quad \blacksquare$$

The following Proposition 4.3.4 and Lemma 4.3.5 will be useful to give a decomposition in real subalgebras of the Cartan sub-LCR-algebra h.

Proposition 4.3.4 Let α be in Δ and β be any CR-root. Define the α -series containing β as the set of all roots of the form $\beta + n\alpha$ where n is an integer. Then

(i) the α -series containing β is an uninterrupted string of the form $\beta + n\alpha$ ($p \le n \le q$). The integers p and q satisfy the condition

$$-2\frac{\beta(H_{\alpha})}{\alpha(H_{\alpha})} = p + q.$$

(ii) let X_{α} be in g^{α} , $X_{-\alpha}$ in $g^{-\alpha}$, and X_{β} in g^{β} . Then,

$$[X_{-\alpha}, [X_{\alpha}, X_{\beta}]] = \frac{q(1-p)}{2} \alpha(H_{\alpha}) B^{\psi}(X_{\alpha}, X_{-\alpha}) X_{\beta}.$$

- (iii) the only roots proportional to α are $-\alpha, 0, \alpha$.
- (iv) suppose $\alpha + \beta \neq 0$. Then, $[g^{\alpha}, g^{\beta}] = g^{\alpha+\beta}$.

Since the Killing CR-form is nonvanishing, it is possible to consider a family of elements $\{E_{\alpha} \in \mathbf{g}^{\alpha}\}_{\alpha \in \Delta}$ such that $B^{\psi}(E_{\alpha}, E_{-\alpha}) = 1$. This fact is the foundation of the proof of Proposition 4.3.4. The complete computations coincide with the ones of the semisimple case (in which the Killing form B replaces the CR-one B^{ψ}) as developed in [HE].

Lemma 4.3.5 An element $H \in \mathbf{h}$ such that $\alpha(H) = 0$, for all $\alpha \in \Delta_1$. is in the centralizer $c(\tilde{\mathbf{q}})$.

In fact, since any CR-root α of Δ_1 is of the form $\tilde{\alpha} \circ \tilde{\varphi}$, with $\tilde{\alpha}$ in $\tilde{\Delta}$. then $\tilde{\varphi}H$ vanishes.

A direct consequence of Proposition 4.3.4 is that on the real subspace $\mathbf{h}_{\mathbf{R}} \doteq \sum_{\alpha \in \Delta} \mathbf{R} H_{\alpha}$, the Killing CR-form B^{ψ} is real and positive definite. Moreover, $\mathbf{h}_{\mathbf{R}}$ is a real form of \mathbf{h} : $\mathbf{h} = \mathbf{h}_{\mathbf{R}} \oplus i\mathbf{h}_{\mathbf{R}}$.

In the last part of the present Section we shall prove that both $\tilde{\mathbf{q}}$ and \mathbf{q} may be seen as sums of their intersection with \mathbf{h} and some CR-root spaces.

Lemma 4.3.6 Let α be a CR-root in Δ_1 . Then $H_{\alpha} = \tilde{H}_{j_1\alpha}$, where H_{α} and $\tilde{H}_{\tilde{\alpha}}$ are defined by

$$B^{\psi}(H_{\alpha}, H) = \alpha(H), \forall H \in \mathbf{h};$$

$$B_{\tilde{\mathbf{q}}}(\tilde{H}_{\tilde{\alpha}}, H) = \tilde{\alpha}(H), \forall H \in \mathbf{h} \cap \tilde{\mathbf{q}}.$$

Proof: a direct computation shows that, if $\tilde{\alpha} = j_1 \alpha$,

$$B^{\psi}(\tilde{H}_{\tilde{\alpha}},H)=B_{\tilde{\mathbf{q}}}(\tilde{H}_{\tilde{\alpha}},\tilde{\varphi}H)=\tilde{\alpha}\tilde{\varphi}(H)=\alpha(H)=B^{\psi}(H_{\alpha},H)\blacksquare$$

Finally, recall the following notations: let Γ be a subset of Δ . We denote with \mathbf{h}_{Γ} the subspace $\sum_{\alpha \in \Gamma} \mathbf{C} H_{\alpha}$ and with \mathbf{g}^{Γ} , the subspace $\bigoplus_{\alpha \in \Gamma} \mathbf{g}^{\alpha}$. Remark that $[\mathbf{h}, \mathbf{g}^{\Gamma}] \subseteq \mathbf{g}^{\Gamma}$ and $[\mathbf{g}^{\Gamma}, \mathbf{g}^{\Gamma_{1}}] \subseteq \mathbf{g}^{(\Gamma+\Gamma_{1})\cap\Delta} \oplus \mathbf{h}_{\Gamma\cap(-\Gamma_{1})}$. In particular we shall write \mathbf{h}_{j} and \mathbf{g}^{j} for the subspaces $\mathbf{h}_{\Delta_{j}}$ and $\mathbf{g}^{\Delta_{j}}$, respectively. In these terms, Lemma 4.3.6 says that $\mathbf{q} = \mathbf{h}_{1} \oplus \mathbf{g}^{1}$.

Let α_j be in Δ_j . By definition of Δ_0 , $\alpha_0(H_{\alpha_1})$ vanishes. In fact H_{α_1} is in $\mathbf{h} \cap \tilde{\mathbf{q}}$. This means that $B(H_{\alpha_0}, H_{\alpha_1}) = 0$. In particular, there is the

Proposition 4.3.7 The bilinear forms $B^{\psi}|_{\mathbf{h}_0 \times \mathbf{h}_0}$ and $B^{\psi}|_{\mathbf{h}_1 \times \mathbf{h}_1}$ are non-singular. Moreover, $\mathbf{h}_1 = \cap_{\alpha_0 \in \Delta_0} Ker\alpha_0$ and $\mathbf{h}_0 = \cap_{\alpha_1 \in \Delta_1} Ker\alpha_1$.

Proof: the first part is a consequence of the fact that $B^{\psi}|_{\mathbf{h} \times \mathbf{h}}$ is nonsingular. Then, the above computations show that \mathbf{h}_{Δ_1} is a subset of $\bigcap_{\alpha_0 \in \Delta_0} Ker\alpha_0$. Finally, take, $H = h^{\alpha_1}H_{\alpha_1} + h^{\alpha_0}H_{\alpha_0}$ in $\bigcap_{\alpha_0 \in \Delta_0} Ker\alpha_0$. By definition, it is $\beta_0(H) = h^{\alpha_0}\beta_0(H_{\alpha_0})$. Decompose h^{α_0} as $a^{\alpha_0} + ib^{\alpha_0}$ and define $A \doteq a^{\alpha_0}H_{\alpha_0}$ and $B \doteq b^{\alpha_0}H_{\alpha_0}$. Then $B(H_{\beta}, A) = B(H_{\beta}, B) = 0$, $\forall \beta \in \Delta$. Thus A and B vanish.

Let us recall that when h' is a subspace of h and Γ is a subset of Δ . then the linear space $h' \oplus g^{\Gamma}$ is a subalgebra if and only if Γ is closed and $h' \supseteq h_{\Gamma \cap (-\Gamma)}$.

Define, now, the subsets

$$\Delta_1(\mathbf{q}) \doteq \{\alpha \in \Delta_1 : Ker\alpha \text{ does not contain } \mathbf{h} \cap \mathbf{q}\}$$

$$\Delta_1(\overline{\mathbf{q}}) \doteq \{\alpha \in \Delta_1 : Ker\alpha \text{ does not contain } \mathbf{h} \cap \overline{\mathbf{q}}\}.$$

Since \mathbf{q} and $\overline{\mathbf{q}}$ are ideals of the semisimple Lie-algebra $\tilde{\mathbf{q}}$, they are $ad_{\mathbf{h}\cap\tilde{\mathbf{q}}}$ -stable. Hence, we may apply the

Lemma 4.3.8 Let h be a Cartan subalgebra of a semisimple Lie-algebra g and V a linear subspace of g. Define the set $\Delta(V)$ of the roots $\alpha \in \Delta$ such that $g^{\alpha} \subseteq V$. Then the greatest linear subspace of V which is ad_h -stable is $V \cap h + g^{\Delta(V)}$. [BO2].

So, we obtain that $q = h \cap q \oplus g^{\Delta_1(q)}$ Since, $\tilde{q} = h \cap q \oplus h \cap \overline{q} \oplus g^1$. the following relations are true:

$$(i) h \cap \tilde{q} = h \cap q \oplus h \cap \overline{q};$$

(ii)
$$\Delta_1 = \Delta_1(\mathbf{q}) \cup \Delta_1(\overline{\mathbf{q}}).$$

In particular, when α is in $\Delta_1(\mathbf{q})$, $-\alpha$ is in it, too. And the Cartan subalgebra $\mathbf{h} \cap \mathbf{q}$ coincides with $\mathbf{h}_{\Delta_1(\mathbf{q})}$.

Remark 4.3.9 The above decomposition gives a construction for different CR-structures of g. Let $\Delta^* \subseteq \Delta$ be a closed subset such that

1.
$$\Delta^* \cap \overline{\Delta}^* = \{0\}$$

2.
$$[H_{\alpha}, H_{\beta}] = 0, \forall \alpha, \beta \in \Delta^*$$
.

Then, the subspace $q^* \doteq h_{\Delta^*} \oplus g^{\Delta^*}$ is a CR-structure.

Proposition 4.3.10 The closed set $\Delta^{\alpha} = \{\pm \alpha, 0\}$ satisfies the two conditions of Remark 4.3.9.

In fact, the first one is trivial. For the second, let us compute

$$B^{\psi}([H_{\alpha}, H_{-\alpha}], H) = B^{\psi}(H, [H_{\alpha}, H_{-\alpha}]) = B^{\psi}([H, H_{\alpha}], H_{-\alpha}) =$$

$$= B^{\psi}([H_{\alpha}, H], H_{\alpha}) = B^{\psi}(H_{\alpha}, [H_{\alpha}, H]) =$$

$$= B^{\psi}([H_{\alpha}, H_{\alpha}], H) = 0. \quad \blacksquare$$

4.4 A decomposition of g.

Recall that a Cartan subalgebra h is a nilpotent subalgebra which coincides with its normalizer n(h). In this Section, we proof that a Cartan sub-LCR-algebra is an abelian Cartan subalgebra. Hence, we make use of the abelianity to decompose the CR-semisimple LCR-algebra g. The final result is based on some facts about ad_h -stability proved in [BO2].

Theorem 4.4.1 Let h be a Cartan sub-LCR-algebra. Then h is a Cartan subalgebra of g.

Proof: by Lemma 3.2.6, the subalgebra h is nilpotent. Moreover, take an element $X = H + \sum_{\alpha \in \Delta} X_{\alpha}$ of $\mathbf{n}(\mathbf{h})$. Then, by definition $[X, H'] = [H, H'] + \sum_{\alpha \in \Delta} \alpha(H') X_{\alpha}$ is in h, for all $H' \in \mathbf{h}$. Hence, X_{α} vanishes, for all α in Δ .

Even the converse is true. In fact,

Proposition 4.4.2 Let h be a τ -stable Cartan subalgebra of g such that $h \cap q$ is a Cartan subalgebra of q. Then h is a Cartan sub-LCR-algebra of g

Proof: $ad_H g \to g$ is a semisimple map and h is a CR-abelian sub-LCR-algebra. The maximality of h is shown as in Lemma 4.2.10.

Proposition 4.4.3 Let h be a Cartan subalgebra of g which is a sub-LCR-algebra. then h is a Cartan sub-LCR-algebra if and only if $h \cap q$ is a Cartan subalgebra of q.

Moreover, h has the same properties as the Cartan subalgebra of a semisimple Lie-algebra.

Proposition 4.4.4 The Cartan subalgebra h is a maximal abelian subalgebra of g.

Proof: let us compute

 $B^{\psi}([H_1, H_2], H_3) = B_{\tilde{\mathbf{q}}}(\tilde{\varphi}[H_1, H_2], \tilde{\varphi}H_3) = B_{\tilde{\mathbf{q}}}([\tilde{\varphi}H_1, \tilde{\varphi}H_2], \tilde{\varphi}H_3).$

Finally, $[\tilde{\varphi}H_1, \tilde{\varphi}H_2]$ vanishes, by the abelianity of $\mathbf{h} \cap \tilde{\mathbf{q}}$. Hence, since B^{ψ} is nondegenerate on $\mathbf{h} \times \mathbf{h}$, $[H_1, H_2]$ vanishes, too. The maximality follows by the definition.

Since h is abelian, the ad_h -stable linear subspaces are described by the

Lemma 4.4.5 Let V be a linear subspace of g and $\Delta(V)$ the set $\{\alpha \in \Delta : g^{\alpha} \subseteq V\}$. Then, the greatest ad_h -stable linear subspace of V is $V \cap h + g^{\Delta(V)}$.

As a consequence of Lemma 4.4.5, we describe the $ad_{\rm h}$ -stable subalgebras.

Proposition 4.4.6 The ad_h -stable subalgebras of g are the linear subspaces $h' \oplus g^{\Gamma}$, where $\Gamma \subseteq \Delta$ is a closed subset and $h' \subseteq h$ is a linear subspace including $h_{\Gamma \cap (-\Gamma)}$.

Proposition 4.4.7 Let $k \subseteq g$ be an ad_h -stable subalgebra, h' a subspace of h and Γ a subset of Δ such that $k = h' \oplus g^{\Gamma}$. Then, k is reductive if and only if $\Gamma = -\Gamma$.

Now, we have all the elements to give the main result of the Section. In the previous Section we have decomposed g as $g = \tilde{q} \oplus h_0 \oplus g^0$. Let us pose $q_0 \doteq h_0 \oplus g^0$. Since Δ_0 is a closed set such that $\Delta_0 = -\Delta_0$, q_0 is an ad_h -stable complex subalgebra of g. Moreover $h_1 \subseteq c(q_0)$ and $q_0 \subseteq n(g^1)$. Finally, remark that $g = \tilde{q} \oplus_{ad} q_0$, and we have proved the

Theorem 4.4.8 Let g be CR-semisimple. Then, there exists a reductive subalgebra q_0 such that $g = \tilde{q} \oplus_{ad} q_0$. The subalgebra h_0 is a Cartan subalgebra of q_0 .

To give a deeper description of $\mathbf{g} = \tilde{\mathbf{q}} \oplus_{ad} \mathbf{q}_0$, let us study a Liealgebra \mathbf{g} decomposed as $\mathbf{g} = \mathbf{h} \oplus_{\delta} \mathbf{k}$, where the first factor is semisimple and the second is reductive.

As we have remarked in Chapter 1, since h is semisimple, there exists a Lie-homomorphism $B: \mathbf{k} \to \mathbf{h}$ such that $\delta(K) = ad_{BK}, \forall K \in \mathbf{k}$.

Consider now the decompositions in simple ideal $\mathbf{h} = \mathbf{h}_1 \odot \ldots \odot \mathbf{h}_h$ and $\mathbf{k} = \mathbf{k}_0 \odot \mathbf{k}_1 \odot \ldots \odot \mathbf{k}_k$, where \mathbf{k}_0 is the centre $\zeta(\mathbf{k})$. Thus, via a permutation, the ideal KerB may be seen as $KerB = \mathbf{k}_{\beta_0} \odot \ldots \odot \mathbf{k}_{\beta_b}$ and $\mathbf{k} = KerB \odot \mathbf{k}_{\beta_{b+1}} \odot \ldots \odot \mathbf{k}_{\beta_k}$. Remind that, when KerB coincides with \mathbf{k} , δ vanishes and the sum is direct.

Moreover, define $h^B = h \odot KerB$ and $k^B = k_{\beta_{b+1}} \odot ... \odot k_{\beta_k}$. Then h^B is an ideal of g, k^B is an its subalgebra and one of them is semisimple. Furthermore, the map $\hat{B} : k^B \to h : K \mapsto B(K)$ is injective and k^B is isomorphic to the subalgebra Bk^B of h. Finally, remark that the following decompositions of g are given

$$g = h \oplus_{\delta} k = h^B \oplus_{\delta} k^B \simeq h^B \oplus_{ad} Bk^B.$$

Theorem 4.4.9 Let g be a CR-semisimple not semisimple LCR-algebra. Then there exist an ideal h containing \tilde{q} and a subalgebra k contained in \tilde{q} such that $g = h \oplus_{ad} k$. Moreover, if h is decomposed as $h = \tilde{q} \odot h_1 \odot \ldots h_l$, then q_0 coincides with $h_1 \odot \ldots \odot h_l \odot k$.

4.5 Real CR-forms.

Let g and g' be two Lie-algebras endowed with two semisimple LCR-structures q and q'. Since \tilde{q} and \tilde{q}' are semisimple Lie-algebras, any one-to-one R-linear map $f_1: h_{1R} \to h'_{1R}$ such that f_1^t maps Δ'_1 onto Δ_1 can be extended to a Lie-isomorphism $\tilde{f}_1: \tilde{q} \to \tilde{q}'$. Such an isomorphism is defined by

$$\tilde{f}_1 H_{\alpha} = H_{\alpha'}$$

$$\tilde{f}_1 E_{\alpha} = E_{\alpha'},$$

where $\alpha = f_1^t \alpha'$ and the $E'_{\alpha}s$ satisfy $B(E_{\alpha}, E_{-\alpha}) = 1$.

The same construction may be done with a map $f_0: \mathbf{h}_{0\mathbf{R}} \to \mathbf{h}'_{0\mathbf{R}}$ (with the same hypothesis), whose extension \tilde{f}_0 maps \mathbf{q}_0 onto \mathbf{q}'_0 .

Theorem 4.5.1 Let (g, q) and (g', q') be CR-semisimple LCR-algebras, h and h' their Cartan sub-LCR-algebra. Let Δ and Δ' denote the corresponding CR-root systems. Suppose $f: h_R \to h'_R$ be a R-linear one-to-one map such that $fh_{jR} \subseteq h'_{jR}$ and f^t maps Δ'_j onto Δ_j . Then f can be extended to a Lie-isomorphism $\tilde{f}: g \to g'$, which sends \tilde{q} in \tilde{q}' and q_0 in q'_0 .

Proof: consider the restrictions $f_j = f|_{\mathbf{h}_{j\mathbf{R}}}$, j = 0, 1. Both of them admits an extension \tilde{f}_j . Define $\tilde{f} \doteq \tilde{f}_1 \oplus \tilde{f}_0$. A direct computation shows that \tilde{f} is a Lie-homomorphism.

Theorem 4.5.2 For each nonvanishing CR-root α , there is a vector X_{α} such that

$$[H, X_{\alpha}] = \alpha(H)X_{\alpha}$$

$$[X_{\alpha}, X_{\beta}] = \begin{cases} H_{\alpha} & \text{if } \beta = -\alpha \\ 0 & \text{if } \alpha + \beta \notin \Delta \\ N_{\alpha, \beta} X_{\alpha + \beta} & \text{if } \alpha + \beta \in \Delta. \end{cases}$$

where $N_{\alpha,\beta} = -N_{-\alpha,-\beta}$.

Consider now a generic complex Lie-algebra g. It may be thought as a real Lie-algebra g^{R} endowed with a complex structure J_{R} given by the multiplication by i.

Definition 4.5.3 A real form g_0 of g is a real subalgebra of g^R such that $g^R = g_0 \oplus J_R g_0$. A real CR-form of the LCR-algebra g is a pair (g_0, p_0) such that g_0 is a real form of g and g_0 is a real form of g. A real CR-form (g_0, p_0) is said to be CR-compact if g_0 is a compact subalgebra.

Theorem 4.5.4 Every CR-semisimple LCR-algebra admits a CR-compact real CR-form.

Proof: the real subspaces

$$\mathbf{g}_0^* = \sum_{\alpha \in \Delta} \mathbf{R} i H_{\alpha} \oplus \sum_{\alpha \in \Delta} \mathbf{R} (X_{\alpha} - X_{-\alpha}) \oplus \sum_{\alpha \in \Delta} i \mathbf{R} (X_{\alpha} + X_{-\alpha})$$

$$\mathbf{p}^* = \sum_{\alpha \in \Delta_1} \mathbf{R}iH_\alpha \oplus \sum_{\alpha \in \Delta_1} \mathbf{R}(X_\alpha - X_{-\alpha}) \oplus \sum_{\alpha \in \Delta_1} i\mathbf{R}(X_\alpha + X_{-\alpha})$$

are Lie-subalgebras, since $N_{\alpha,\beta} = -N_{-\alpha,-\beta}$. By construction, the pair $(\mathbf{g}_0^*, \mathbf{p}^*)$ is a real CR-form. Finally, we may compute, with respect of (H_α, X_α) , that $B|_{\mathbf{p}^* \times \mathbf{p}^*}$ is negative definite. So, \mathbf{p}^* is compact.

Thus, in the real terms, the classification of the LCR-structures $(\mathbf{g}_0, \mathbf{p}, \mathbf{J})$ given on a semisimple ideal is equivalent to the classification

of the real Lie-algebras \mathbf{g}_0^* which admit an even-dimensional compact semisimple ideal \mathbf{p}^* . In fact, if \mathbf{p}^* is a compact semisimple ideal of \mathbf{g}_0 , $\tilde{\mathbf{q}} \doteq \mathbf{p}^* \otimes_{\mathbf{R}} \mathbf{C}$ is a semisimple ideal of $\mathbf{g} = \mathbf{g}_0 \otimes_{\mathbf{R}} \mathbf{C}$ which admits \mathbf{p}^* as compact real form. So, if J denotes the multiplication by i, $\tilde{\mathbf{q}}$ is equal to $\mathbf{p}^* \oplus J\mathbf{p}^*$. Hence, the subspace \mathbf{q} of the elements x - iJx is a complex ideal of \mathbf{g} which does not intersect $\overline{\mathbf{q}}$. Then, the set of CR-semisimple LCR-algebras and the one of real Lie-algebras with an even-dimensional semisimple compact ideal, are bijective.

4.6 Appendix.

1. Let us remind that g is CR-simple if any nontrivial LCR-ideal contains q. In particular, q is simple. The vice versa is also true. In fact, whenever q is simple, any LCR-ideal h of g contains q. thus, g is CR-simple. Obviously, a CR-simple LCR-algebra is CR-semisimple.

Theorem. Let g be a CR-semisimple LCR-algebra and q be decomposed as $q = q_1 \odot ... \odot q_k$. then, there exist some LCR-ideal g_1 such that

- 1. $g = g_1 \odot \ldots \odot g_k$;
- 2. $\mathbf{g}_i \cap \mathbf{q} = \mathbf{q}_i$;
- 3. g_i is CR-simple.

Furthermore, we link the CR-simplicity and the CR-maximality, via the following

Proposition. A CR-simple LCR-algebra is CR-maximal.

The proof is a direct consequence of Theorem 3.7.4.

Thus, a CR-simple LCR-algebra g satisfies the following properties:

- 1. g is reductive;
- 2. its center $\zeta(g)$ has dimension less then two;
- 3. its semisimple part $\mathcal{D}g$ is the sum of two, three or four simple ideals. In particular,

$$\mathbf{g} = \left\{ \begin{array}{c} \mathbf{q} \odot \overline{\mathbf{q}} \\ \mathbf{q} \odot \overline{\mathbf{q}} \odot \mathbf{C} H \\ \mathbf{q} \odot \overline{\mathbf{q}} \odot \mathbf{C} H \odot \mathbf{C} \overline{H} \\ \mathbf{q} \odot \overline{\mathbf{q}} \odot \mathbf{h} \\ \mathbf{q} \odot \overline{\mathbf{q}} \odot \mathbf{h} \odot \overline{\mathbf{h}} \end{array} \right.$$

2. Take, now, a CR-semisimple LCR-algebra ${\bf g}$ endowed with its CR-root set $\Delta.$

Lemma. the set Δ is a reduced root system of the Cartan sub-LCR-algebra h.

Proof: by definition, Δ spans \mathbf{h}^* . Moreover, consider the reflection $S_{\alpha}\beta \doteq \beta - 2\frac{\langle \alpha,\beta \rangle}{\langle \alpha,\alpha \rangle}\alpha$, where $\langle \alpha,\beta \rangle = \alpha(H_{\beta})$. By Proposition 4.3.4, S_{α} maps Δ onto Δ and the number $a_{\alpha\beta} = -2\frac{\langle \alpha,\beta \rangle}{\langle \alpha,\alpha \rangle}$ is a integer. Finally, if $m\alpha$ is a root, m = -1.

The root system Δ is no irreducible, in fact

$$\Delta = \Delta_0 \cup \Delta_1$$

< $\Delta_0, \Delta_1 >= 0.$

Moreover,
$$\Delta_1 = \Delta_1(\mathbf{q}) \cup \Delta_1(\overline{\mathbf{q}})$$
 and $\langle \Delta_1(\mathbf{q}), \Delta_1(\overline{\mathbf{q}}) \rangle = 0$.

Then, we may consider a simple root system $\Phi = \{\alpha_1, \ldots, \alpha_k\}$ endowed with its Cartan matrix $a_{ij} = -2 \frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_i, \alpha \rangle_i}$. Via the Cartan matrix, we construct the diagram of \mathbf{g} . It consists of a vertex for each α_i , with $a_{ij}a_{ji}$ lines betweew α_i and α_j , $i \neq j$.

Remind that a diagram is connected when Φ is irreducible; and Φ is irreducible if and only if g is simple. The connected diagrams are

3. In this point, we describe the disconnected diagram of a CR-semisimple LCR-algebra. Let us stars with the Cr-simple case.

A CR-simple LCR-algebra **g** is either semisimple (if it is of the I of the III type) or reductive with center of dimension one or two. This means that the diagram has two connected components (if **g** is of type I or II); while the connected components are three or four, for the type III.

type	\mathcal{D} g	$\zeta(\mathbf{g})$	number of components
I	60	{0}	2
II	$\mathbf{q}\odot\overline{\mathbf{q}}$	$\mathrm{C}H$	2
		$\mathrm{C} H\odot \mathrm{C} \overline{H}$	
III	ხე	{0}	3
			4

Finally, the disconnected diagram of a CR-semisimple LCR-algebra is the disjoint union of the diagram of its CR-simple LCR-ideals.

Bibliography

- [AHR] H. Azad, A. Huckleberry, W. Richtofer, Homogeneous CR-manifolds, J. Math. V. 358 198 B. 358 (1985), 125-154.
- [BOG] A. Boggess, "CR Manifolds and the Tangential Cauchy-Riemann Complex", Studies in Advanced Mathematics, CRC Press, 1991.
- [BO1] N. Bourbaki, Groupes et algebres de Lie, chapitres 4, 5 et6, Diffusion C.C.L.S., Paris, 1981.
- [BO2] N. Bourbaki, Groupes et algebres de Lie, chapitres 7 et 8. Diffusion C.C.L.S., Paris, 1975.
- [DG] S. Donnini, G. Gigante, Classification of left invariant CR-structures on $GL^+(3, \mathbf{R})$, Riv. Mat. Univ. Parma 16 (1990), 343-355.
- [GO1] D. Gouthier, Lie-CR-structures on real Lie-algebras, to appear in Jou. of Diff. Geo. and its appl., 1995.
- [GO2] D. Gouthier, Levi-flat and solvable CR-structure on Real Lie-algebras, submitted to Forum Mathemathicum.

- [GT] G. Gigante and G.Tomassini, CR-structures on a real Liealgebra, Adv.Math. 94 (1992), 67-81.
- [HE] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, London, 1978.
- [JA] H. Jacobowitz, "An introduction to CR-structures", AMS,Providence Rhode Island, 1990.
- [JAC] N. Jacobson, *Lie algebras*, Dover Publications Inc, New York, 1962.
- [KNA] A.W. Knapp, Representation Theory of Semisimple Groups,Princeton University Press, Princeton, 1986.
- [KN] S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry", vol. I and II, Interscience Publ, New York, 1969.
- [MI] J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329.
- [MO] A. Morimoto, Structures complexes sur les groupes de Lie semi-simples, C.R. 242 (1946), 1101-1103.
- [SE] J.P. Serre, Complex semisimple Lie-algebras, Springer-Verlag, Berlin, 1987.
- [SN] D. Snow, Invariant complex structures on reductive Lie groups, J. Math. B. 371 (1986), 191-215.

- [VA] V.S. Varadarajan, Lie groups, Lie algebras and their Representations, Prentice-Hall, Englewood Cliffs, NJ, 1974.
- [WE] S.W. Webster, Pseudo-hermitian structures on a real hypersurface. J. Differential Geom. 13 (1978), 25-41.

