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Abstract: Let g,, be a real Lie algebra and g its complexification. The aim of this paper is to study the Lie-CR- 
structures (in the following we shall call them just LCR-structures) on g,. To an LCR-structure corresponds a 
CR-structure on the associated real Lie group Go for which right and left translations are both CR-maps. Levi- 
Mal’cev decomposition permits to consider separately the semisimple and the solvable cases and to describe 
completely the LCR-structures of a generic real Lie algebra g,. Hence, we introduce and describe the semidirect 
sum by the adjoint derivation of the structures induced on the solvable radical and on a Levi subalgebra. 
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Introduction 

The aim of this paper is to classify the Lie-CR-structures of a real Lie algebra go. By an LCR- 

structure on a real Lie algebra go we mean a triple ro = (go, p, J) such that p is an ideal in go and 

J is an endomorphism of p whose square is minus the identity (so p has to be even-dimensional) 

and which commutes with the adjoint derivations adx, VX E go. 
Of course LCR-structures are a particular kind of CR-structures [4]. Recall that a CR-structure 

(p, J) on a real Lie algebra go is given by a linear subspace p and by an endomorphism J : p + p 

such that 

1. J” = - id, 

2. [X, Y] - [JX. JY] E p, VX, Y E p, 

3. [JX, JY] = IX, Y] + J[X, JY] + J[JX, YJ, VX, Y E p. 

If one denotes with g the complexification of go and with t the conjugation of g with respect to go. 
then the linear space q = {X - i JX : X E p} is really a complex subalgebra of g which does not 

intersect its conjugate q = tq. Given such a q, g can be written as a direct sum g = q $ q @ V, 

where V = @l=, @Xi, X1 . . . X, E go. The integer r is called the real codimension of the 

CR-structure. 
It is quite easy to introduce basic CR-concepts: CR-subalgebra, CR-ideal, CR-homomorphism. 

equivalence between CR-structures. In fact, consider a subalgebra ho in go, a natural question is 

“when does ho assume a CR-structure induced by Fo?” Let h be its complexification. Let us denote 
by k and k the subalgebras h fl q and h n S, respectively. Obviously, k n G = k f’ (h n V) = 

k n (h n V) = (0). But, in the general case, k and i are not isomorphic. Take, for instance, h = q, 
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then you have k = h and c = (0). So we are forced to say that a real subalgebra ho admits 

the CR-structure (ho, k, .I) induced by ro if k # {0} and tk = G. In that case h is said a CR- 

subalgebra in g. Let ho be an ideal, then h is said a CR-ideal. One can easily notice that q is not a 

CR-subalgebra; every subalgebra of V is a trivial CR-subalgebra; let h be a CR-subalgebra which 

doesn’t intersect V, then k is an almost complex structure on ho. In order to compare different 

CR-structures, we introduce the CR-homorphisms: given two CR-structures, FO = (go, pp, Igo) 

and E:o = (ho, ph, &), a Lie homomorphism (resp. a Lie derivation) 0 : go -+ ho is a CR- 

homomorphism (resp. a CR-derivation) if apg C ph and o JgO = Jh,,o. 

Now, let ru = (go, pg, J) and %u = (ho, ph, J’) be CR-structures and q : go -+ ho a 

CR-monomorphism. In that case, we say that Fe is q-compatible with E. and that ro is a (p-CR- 

substructure of HO. Hence, if one considers the triple q*I’o = (qgu, qpg, c,o J~o-‘), one obtains 

a CR-structure. It is a fact that ra is p-compatible with E;o if and only if pg is a CR-subalgebra 

of h. We can say that I’0 and 60 are equivalent (or CR-isomorphic) if there exist ~0 : go + ho 
and + : ho += go such that I’0 is qa-compatible with 60 and Eo is @-compatible with ro. In that 

case, go and ho are Lie isomorphic (via (p and @); p (resp. @) sends pp in ph (resp. ph in p& and 

spJgO = Jh,q. Obviously we can replace the $-compatibility with the (~-~-compatibility. Two 

equivalent CR-structures are given, for instance, by IO and q*ro, for any CR-monomorphism 
from r. in another CR-structure Ea. 

If GO is the associated Lie group, giving a CR-structure r. on go is the same as considering a 
structure of CR-manifold on GO for which the left translations are CR-maps. 

If the CR-structure I’0 is such that p is a real Lie subalgebra (i.e. q CD tj is a complex one), the 

Lie group GO with the CR-structure ra is a Levi-flat manifold: such CR-manifolds have Levi-form 
vanishing at each point, [ 1,2,13]. Moreover, if adx J = J adx for all X E go and p is an ideal (i.e., 

q is it), then p (with the complex structure J) is, really, a complex subalgebra; and the Lie group 

Go is foliated with complex Lie subgroups and both the translations are CR-maps. Such a case is 

studied in this paper. In these conditions we say that the CR-structure r. is a LCR-structure. 

In [ 1 l] the reader can find a study on left-invariant complex structure on reductive Lie groups. 

Such results have been translated by [4] in terms of CR-structures on reductive Lie algebras of the 

first category (in these algebras the involution determined by a Cat-tan decomposition is an inner 
automorphism [6]): the authors study, essentially, the case of real codimension 1. 

In this paper we explore the case of LCR-structures without any hypothesis on the Lie algebra. 
This exploration permits us to classify all the LCR-structures. We base our work on the classical 

Levi-Mal’cev theorem which assures that all the Lie algebras admit a decomposition go = r Q&d s, 

where r is the solvable radical and s is a semisimple subalgebra [ 121. Remark that we denote with 

@ the direct sum of linear spaces; with @J the semidirect sum by 6 of Lie algebras; with @ the 

direct sum of Lie algebras. 

Thanks to Levi-Mal’cev decomposition, we have to study LCR-structures in the semisimple 
and in the solvable cases (Sections 1 and 2): in the first one the LCR-structures are sums (in the 

sense of the last proposition of Section 1) of simple ideals endowed with a complex structure 
(described by Cartan in the classical classification [6]); in the second one they are given by 

even-dimensional ideals p, decomposed as p = u Cl3 Au and by 

J=J..,:=(; --t-l), 
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endomorphism of p. Section 3 shall proof when there is an LCR-structure on a semidirect sum 

whose factors are endowed with two LCR-structures. Finally, Section 4 concludes with the Theo- 

rem 4: let go be decomposed following Levi-Mal’cev decomposition. Then TO = (go, p, J) is an 

LCR-structure if and only if its projections on the factors are LCR-structures whose semidirect 

sum by the adjoint derivation ad is I’0 itself. Obviously this result let us describe all the LCR- 

structures. The only indetermination is due to the knowledge of the ideals of solvable Lie algebras. 

The last section is devoted to some examples. 

1. The semisimple case 

In this Section we denote by go a real Lie algebra and by B its Killing form (recall that if 

go is semisimple, B is nondegenerate). Just by computation, one can observe that J is an anti- 

isometry with respect to B. In fact, ad JX Y = - adr JX = -J adr X = J adx Y. So we have 

ad,,x = adx J = J adx and B(JX, JY) = -B(X, Y). 

In the sequel we shall divide our study in two subcases: the first one considers compact semisim- 

pie real Lie algebras; the second one those noncompact. Recall that a Lie algebra go is compact if 

there exists a compact Lie group whose Lie algebra is go. That is equivalent to the decomposition 

go = {(go) 0 [go, go], where <(go) is the center of go and [go, go] is semisimple [5]. 

It is a classical fact that the existence of a complex structure on a compact (not semisimple) 

Lie algebra implies the abelianity of the algebra itself [5]. Moreover, if p is in the center of go, IO 

is trivially an LCR-structure, so we can hopefully expect a CR analogous of the complex result. 

Such an analogous result is based on the 

Lemma. Given TO = (go, p, J) LCR-structure, p admits a biinvariant metric if and only if’p is 

ahelian. 

Proof. A metric g is biinvariant iff g([X, Y], Z) = g(X, [Y. Z]). Suppose p is abelian. 

then any metric is, certainly, biinvariant. Let us prove the converse, We can impose that ./ 

is an isometry with respect to g (otherwise we substitute g with g’(X, Y) := g(X. Y) + 

g(JX. Jr>>. With this hypothesis the following chain of equivalences is true, VX, Y, Z E p: 

g(lX, Yl. Z) = g(J[X, Yl, JZ) = g([X, JYl, JZ) = g(X, [JY, JZ]) = -g(X, IY. Zl) = 

-r([X, YI, Z) = 0, therefore g([X, Y], Z) = 0, which concludes the lemma. 0 

Since any compact Lie algebra admits a biinvariant metric the above lemma implies the following 

Proposition. Given go compact (not semisimple), To = (go, p, J) is an LCR-structure if und 

only if p is abelian. 

The previous proposition permits us to describe completely the compact case with the 

Theorem 1. There are no LCR-structures on a compact semisimple Lie algebra. Furthermore, 

when go is compact, To = (go, p, J) is an LCR-structure if and only if p is in the center [(go). 

Proof. The nonexistence of abelian ideals in a semisimple Lie algebra concludes the first part 

of the assertion. About the second one, recall that a compact Lie algebra go takes the form 
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go = <(go) 0 [go, go], where [go, go] is semisimple. Now suppose that go supports an LCR- 
structure ra = (go, p, J), then p takes the form pi @ p2 where p2 is an ideal in [go, go]. Suppose 
that J maps p2 in itself, then ([go, go], ~2, J) is a LCR-structure, that is impossible. Hence, 

P = Pl c <(go). Let us conclude proving that J maps p2 in itself. Consider the complex 

subalgebras qj = {X - i JX : X E pj). Obviously it is q = qr @ q2 and q2 is another 

LCR-structure of go. Hence, it is given the endomorphism 52 : p2 + ~2. Take X E ~2, then 

X - iJX E q (resp. X + iJX E q) and X - iJ?X E q2 c q (resp. X + i&X E q, c q), so 
i(J2X-JX)=(X-iJX)-(X-iJ2X)=(X+iJ2X)-(X+iJX)Eqn4={O),which 

means that J maps p2 in itself. 0 

In Section 2 we shall study LCR-structures on abelian Lie algebras. Hence we will describe 

completely LCR-structures in the compact case. Now we move to the study of LCR-structures 

on semisimple noncompact Lie algebras. The simple case is trivial. In fact, since there are no 
nontrivial ideals, an LCR-structure on a simple Lie algebra is, really, an ad-invariant complex one. 

Moreover, it is well known that a semisimple Lie algebra is direct sum of simple ideals. These 
facts bring us to the 

Proposition. An LCR-structure on a semisimple Lie algebra is completely de$ned by its simple 

ideals endowed with a complex structure. 

Proof. Since go is semisimple, we can write go = p1 0 . . . 0 pn, where the Pj are simple ideals 

(such a decomposition is essentially unique). Let p be the ideal on which is given the CR-structure, 

then p is direct sum of some p; As in Theorem 1, the restriction of J to pi has image in pi. This 
fact concludes the proof. 0 

Hence, an LCR-structure on a semisimple Lie algebra is given by the complex structures on some 

simple factors. Each of these factors is described in the Cartan’s classification of the complex sim- 
ple Lie algebras 

g G U 5‘(U) dim U 

a, (n 3 1) SL(n + l,(C) 

b, (n 3 2) SO(2n + 1, C) 

c, (n 3 3) Sp(n, C) 

d, (n 3 4) S0(2n, fZ) 

e6 

e7 

e8 

f4 

g2 

SU(n + 1) 

SO(2n + 1) 

SP@) 

SO(2n) 

E6 

El 

E8 

F4 

G2 

n(n + 2) 

n(2n + 1) 

n(2n + 1) 

n(2n - 1) 

78 

133 

248 

52 

14 

Table 1. 



In the table, g is a simple Lie algebra over c; n the dimension of a Cartan-subalgebra; G a connected 

Lie group such that Lie(G) = g’; U an analytical subgroup such that Lie(U) is a compact real 

form of g (i.e., IJ is a maximal compact subgroup); and U’ is its universal covering [6]. 

The present section will be concluded by the complete description of LCR-structures on 

semisimple Lie algebras. As already showed in Theorem 1, when the algebra is compact there are 

no LCR-structures. Otherwise, is given the following 

Classification. Let go hr semisimple and noncompnc~. Then IIYJ ,yi\v the (e.ssrttrirtll~ uniqw) 

dt~cwnposition go = rl 0 . . Q rj 0 p1 0 . . 0 PI,, IL./WW: 

1. both r, and p; ure simple real ideals; 

2. on the r, there we no complex structures; 

3. uny p, tukes one of the forms in Table 1. 

Wirlt strch LI decotnposi~iot~ wle may choose utty ,wm p = Of=, p,, with the etldotrtot7,histtt 

Tl7c triple (go. p, J) is the generic LCR-strtlcturr in the semi,sitnple case. 

2. The solvable case 

9 real Lie algebra go is solvable if one of its deri,.rd subalgebras vanishes. Recall that the 

dc~ri\wl srricj.s is given by D”g~~ = go, D’go = [go, g,)]. D”go = D’ (D” ‘g,,). Since any ideal of 

go is solvable, an LCR-structure on go is an ad-invariant complex structure on a solvable ideal. 

Let US study such structures on solvable Lie algebras. In the sequel, Lvhen me bpeak of a complex 

structure, we mean an ad-imarinnt one. 

Lemma. S~qyx~.se go is solvahlr and (go, J) is u cotnplt~.~- struc~trru. Then then) t1xi.sr.s (I .slrhspoc~r 

u .such that go = u G3 Ju atzd 

where J’ (resp. J”) is the restriction qf J to u (resp. Ju). 

Proof. Since go is solvable there exists a codimension one ideal p, [ 121. It is easy to show 

that Jpl # PI. Then, there exists X1 E pl such that go = L(X,. JX,) &p, n Jp,. Moreover 

(gel. PI f? Jpl, J) is an LCR-structure. Now we repeat the same proofwith pI n Jp, and p2 (where 

p: is a codimension one ideal in p1 n Jpl) instead of go and pI, In that way, we tind a family 

XI.. , Xx, such that go = L(Xl, . , XL, JXI,. . , JXL) and the spaceu = L(X,. _. XL) 

is the desired one. Cl 

Now we want to show the converse, in the sense that any solvable Lie algebra admits a complex 

structure if and only if it is even-dimensional; in that case we write go as the sum go = u @ v, 
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where u and v have the same dimension. Chosen a linear monomorphism A : u + go such that 

v = Au, the complex structure 

J= JA:=(; -;-I) 

is generic: so the complex structures depend only on the splitting of go in equal-dimensional 

subspaces. Let us prove this fact by induction. 

The simplest solvable algebras are the abelian ones, i.e., the ones whose first derived vanishes. 

On these, a complex structure is just the “multiplication by i,” in fact you have the 

Lemma. Let go be abelian. Then there exists a complex structure J if and only if go is even- 

dimensional. In that case there exist a linear subspace u and a linear monomorphism A : u -+ go 

such that 

1. go=u@Au, 

2. J=J*:=(; -t-l). 

Moreover, all the pair (go, JA) are isomorphic as complex Lie algebras, independently 

subspace u and the morphism A. So we may say that the structure is unique. 

on the 

Proof. Suppose that go is endowed with a complex structure J, then previous lemma gives us 
the pair (u, J’) desired. Vice versa, let go be even-dimensional. Then, choose u and A, such that 

go=u@Au.Th e endomorphism JA is trivially a complex structure on go. If one considers the 

automorphism 

one has an isomorphism between (go, JA) and (go, JB). Hence, the complex structure does not 

depend on A. Finally, we show that does not depend neither on u: let (v, C) be a pair such 

that go = v G3 Cv. Then we have v = Du and go = Du @ ADu, where we have taken D 

Lie isomorphism. It is easy to show that (Du @ ADu, JA) and (u G3 D-‘ ADu, JD-lAD) are 

isomorphic. Cl 

In the previous section we have shown that, given a compact Lie algebra go, I’0 = (go, p, J) is 

an LCR-structure if and only if p is contained in the center 5 (go). The last property permits us to 

describe these LCR-structures. In fact, suppose ra = (go, p, J) is an LCR-structure, then p has 

to be even-dimensional and takes the form p = u CEI Au, with J = JA. Finally, the datum of an 
LCR-structure on a compact Lie algebra is equivalent to the choice of an even-dimensional linear 

subspace of the center. Let us return to solvable algebras. 

Theorem 2. A solvable Lie algebra go admits a complex structure if and only if it is even- 

dimensional. Let (go, J) be a complex structure, then there exist two vector spaces u and v and 
an isomorphism A between u and v such that go = u @ Au and J = JA. Moreover, all the pairs 

(go, JA) are isomorphic as complex Lie algebras. 
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Proof. Let k be the minimum integer such that Dkga = 0, then make the proof by induction over 

k. The base of the induction is given by the abelian case. Now, let go be solvable but not abelian. 

In any case, ga := go/D’ go is abelian. Furthermore J maps D’ga on itself, since J adx = adx J 

So (&, j) is a complex structure, where s is the quotient of J. If we apply the previous lemma, ^ n 
we have that go = i @ J 1 ~~ and J = J- . If we choose a subspace w in the class i, we obtain 

JlW 

go=w@J+wCBD’goand 

where Jf is the restriction at w and Jt the one at D’go. Finally, we apply the inductive hypothesis 

on the pair (D’ga, ./I). 0 

Let go be solvable, then go admits one LCR-structure on each 21-dimensional ideal (in the 

hypothesis that it exists) given by an isomorphism J of the form JA. Hence LCR-structures are 

essentially given by the choice of even-dimensional ideals. Remark that it is possible to have 

different LCR-structures of the same dimension. The study of LCR-structures on a solvable real 

Lie algebra is now completely equivalent to the knowledge of the ideals of the algebra itself: all 

even-dimensional ideals support one, and only one, LCR-structure. 

3. Semidirect sums 

Take two LCR-structures ra = (go, p, J) and I’;, = (go’, p’, .I’). Let 6 : go’ --+ Der(ga) be a 

Lie homomorphism. The semidirect sum of go and 6 by S is the Lie algebra go @A go’ defined on the 

linearspacega@go’bytheproduct[(X, X’), (Y, Y’)lB = ([X, Y]+6(X’)Y-6(Y’)X, [X’, Y’j). 
The actual problem is whether the triple 

rocB&= goe3sg0’7 P*=P@P’9 J*=(; J”,)) 

is an LCR-structure. When it is, one shall say r0 Bta rh the semidirect sum by 6 of To and rb. We 

will answer by steps. 

Lemma. Given the linear subspaces p c go and p’ c go’, their sum p* = p @ p’ is cm ideal ij 
and only if 

(a) p and p’ are ideals; 

(b) S(X’)go c p, VX’ E p’; 
(C) S(Y’>p C p, VY’ f g& 

Proof. Let us suppose that (X, X’) stays in p* and that (Y, Y’) is the generic element of go es go’. 

The relation [(X, X’), (Y, Y’)]8 E p* is equivalent to 

1. [X, Y] + 6(X’)Y - 6(Y’)X E p; 
2. IX’, Y’1 E p’. 
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Particular choices of (X,X’) and (Y, Y’) imply that the first one is equivalent to the following three 

1.1. [X, Y] E p: 
1.2. S(X’)Y E p: 
1.3. 6(Y’)X E p. 

The conditions 1. I and 2. say that p and p’ are ideals; while 1.2 (resp. 1.3) coincides with letter 

(b) (resp. (c)). q 

Moreover. impose that adcx,x8, is a CR-derivation, VX E go and VX’ E gb (i.e., d* is ad-invariant). 

Hence, one obtains the following necessary and sufficient conditions: 

(d) adx and ad:y are CR-derivations; 

(e) J6(X’) = J(J’X’), VX’ E p’; 
(f) 6(X’) is a CR-derivation, VX’ E gb. 

The previous computations let us conclude with the 

Theorem 3. Given two LCR-structures l-0 and rh, their se&direct sum by 6 is an LCR-structure if 

1.1. S(X’)ga c p, VX’ E p’; 
1.2. J6(X’) = S(J’X’), VX’ E p’; 
2.1. B(Y’)p c p, VY’ E go’; 
2.2. 6(Y’)J = JSCY’), VY’ E go’. 

Obviously, direct sums of LCR-structures are LCR-structures: in fact, they correspond to 6 = 0. 

From the proposition it follows that if ho is endowed with a complex structure and if S(X) is 

holomorphic, ho @J go supports a LCR-structure, where go is a generic real Lie algebra. That is 

the case of noncompact semisimple Lie algebras where ga is the sum of the real factors and ho 
is the sum of the Cartan-classified ones. A basic example is given by a reductive Lie algebra. In 

fact, in that case the algebra is the direct sum of its center and of a semisimple Lie subalgebra. 
So, an LCR-structure is direct sum of an abelian LCR-structure with a semisimple one. Such a 

situation bring us to consider Levi-Mal’cev decomposition, In this decomposition one factor is 

semisimple while the other one is solvable, a little more generic than abelian. Its study is the 

object of the following section. 

4. Levi-Mal’cev decomposition 

The tool of this section is the study of LCR-structures ra = (go, p, J) on a generic Lie algebra 

go decomposed, following Levi-Mal’cev, as go = r @ad s, where r is the solvable radical and s is 
a Levi subalgebra. Recall that the L,evi subalgebra is semisimple. 

Due to the Lemma in Section 3, one decomposes p as p = pr CO ps, where pr and ps satisfy 
the following relations 

1.1. ]Pr, rl C Pr, 
1.2. LPS, s] C Ps9 

1.3. [Ps, rl C Pr, 
1.4. [Pr, Sl C Pr; 

1.1 (resp. 1.2) means that Pr (resp. ps) is an ideal in r (resp. s); 1.3 and 1.4 coincide respectively 
with the letters (b) and (c) of the Lemma. 



The second characterizing property of an LCR-structure is J’ = - id. Just computing the 

square of‘ J = (c E ), we obtain 

2.1. A’+ BC = -1. 

‘7.2. AB+RD=O, 

7.3. DC + CA = 0, 

2.3. D’ + CB = -I. 

Finally. let ad,x.x,, be a CR-derivation. That means (AIU. V] + A[U. Y] + A[X. Vi + 

BIX, Yl,C[U. Vl + C[U, Yl + C[X. VI + D[X, Yl) = ([U, AV + BY] + [U. CV + 

DY], +1X. AV + BY]. [X, CV + DY]). In particular. one may consider the cases given by 

the conditions X = Y = 0. X’ = Y’ = 0, X = Y’ = 0 and X’ = Y = 0. The corresponding 

equations are 

.?.I. A[I/.VI=ICI.AVI+IU,CV], 

3.2. A[X, V] = [X, AV], 

j.3. A[U. Y] = [CT. BY] f [U. DY]. 

3.4. B[X. YI = IX, BY], 

3.5. (‘[I/, V] = 0, 

3.6. C’[ CT. Y] = 0. 

3.7. C[X. V] = [X. CV]. 

3.8. D[X. Y] = [X. DYj. 

Proposition. The equations I, l-1.4, 2.1-2.4, 3.1-3.8 de$ne u necessary and .su#icient condition 

it1 or&r thut r,, @a r;, be un LCR-structure. 

The above Proposition is just a “translation” of the LCR-structure’s definition on a semidirect 

sum. Now we have to study the role played by the solvability af r and the semisemplicity of s. In 

this context, their most important consequence is the 

Property, Thcl matrices B and C vanish. 

Proof. Since C[X. V] = [X, CV], C(pr) is an ideal ins. But [CV. CV,] = C[CV. VI 1 = 0, 

so C(p,) is abelian. Consequently C(p,) vanishes. 

It is a classical fact that every ideal and every quotient of semisimple algebras are semisimple 

[ IO), moreover ps/ ker B is semisimple. Otherwise, I- solvable implies that every subspace t c r 

verifies D”t = 0. So B(ps) does. As linear spaces, we have that ps/ ker B 2 B(ps). via the 

isomorphism j X +=BX,whereX+=X+kerB~p,/kerB. 

Letuscompute[jX+,jY+]:firstofall,VX, Y E ps,[BX. BY] = A[BX. Yl-[BX. DY] = 

ABIX. Y] - B[X. DY] = -BD[X, Y] - B[X, DY] = -2BD[X, Y]. By (2.2), you see thar 

I) sends ker B in ker B and hence [jX+, jY+] = -2j(D[X, Yl)+. So, we can conclude that 

D”(p,/ ker B) = 0. since B(ps) does. But the fact that ps/ ker B is semisimple implies that its 

solvable radical vanishes. So ps = ker B. q 

Remark. The condition “C = 0” is true even in a more general case. The only required hypothesis 

is the semisemplicity of s. So if you take a semidirect sum with second factor gh semisimple. an 

LCR-structure takes the form (go @S gb, p @ p’, (‘i :)j. 
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The Property shows that J takes the particular form J = (t i). Hence, our list of equations 
simplify itself to 

1.1. [PI-, rl C pr, 

1.2. [Ps, sl c PST 

1.3. [Ps, rl C Pr, 

1.4. [Pr, sl c Pr, 
2.1’. A2 = -I, 

2.4’. D2 = -I. 

3.1’. A[U, V] = [U, AV], 

3.2. A[X, V] = [X, AV], 

3.3’. A[U, Y] = [U, DY], 

3.8. D[X, Y] = [X, DY]. 

1.1, 2.1’ and 3.1’ say that R = (r, pr, A) is a LCR; 1.2, 2.4’ and 3.8’ say that S = (s, ps, D) is 

an LCR-structure; finally 1.3, 3.3’, 1.4 and 3.2 correspond to 1.1, 1.2, 2.1 and 2.2 of Theorem 3, 

respectively. So we can conclude with 

Theorem 4. Let go = r @ad s be a real Lie algebra. Suppose FO = (go, p, J) is an LCR- 

structure; then R and S are, too; and FO is their semidirect sum by ad. Vice versa, if one considers 

two LCR-structures R = (r, p,., A) and S = (s, ps, D) which satisfj 

1.3. [ps, rl c pr7 

1.4. [pr, Sl C pr, 
3.2. A[X, V] = [X, AV], 

3.3’. A[U, Y] = [U, DY], 

their semidirect sum by ad is an LCR-structure on go. 

5. Examples: LCR on low-dimensional real Lie algebra 

In this section we conclude the paper describing LCR-structures for low dimensional Lie 

algebras go. First of all, recall that there exist just two different bidimensional Lie algebras: the 

abelian one and the Lie algebra ho of the matrices (z _,“), which is solvable. Both of them are 
endowed with the complex structure given by the “multiplication by i.” 

If one wants to consider LCR-structures on real Lie algebras go which are not complex struc- 

tures, it must be dimgo 3 3. Let us start with dimga = 3. Such Lie algebras are completely 

classified in [9]. The classification makes use of the map ~0 : go -+ R : X ++ tr(adx). Since 

tr([adx, adr J) = 0, cp is a Lie homomorphism. The kernel u := ker lp is an ideal called unimodular 
kernel; go is said unimodular if go = II. An important result is given by the 

Lemma. Let go be an unimodular 3-dimensional Lie algebra endowed with a scalar product. 

Then there exists an orthonormal base (El, Ez, E3) such that 

1. [E2, ~531 = LIEI, [&, El1 = h2-b and [El, Ed = AX&; 
2. B(X, Y) = -2(h2h3X1Y’ +hlh3X2Y2 + hlh2X3Y3), where X = X’Ei, Y = Y’E;. 

For a proof, see [5] 



Lie-CR-structures on a real Lie algebra 

The 3-dimensional Lie algebras are classified by the following cases 

1. h, =h*=A3=0, 

2. h, #O,h2=h3=0, 
3. h,hz # 0, hj = 0, 

4. h,hzhs # 0. 

Ctrse 1. go is abelian and isomorphic to Iw3. Each plane supports an LCR structure: in fact. let 

p = L(X, Y) a fixed plane; a structure as desired is given by J(X, Y) = (-Y, X). 

Ctr.ye 2. The Lie product is described by [Ez, Es] = AlEi, [E3, El] = [El, E2] = 0. The 

planes pz = L (E 1, E3) and p3 = L (E 1, Ez) are abelian ideals endowed with the LCR structures 

JztEl. E3) = (-E3, El) and .&(El, E2) = (-Ez, El). 

Ctrse 3. As in the case before, the plane p3 = L(E, , E2) is an abelian ideal endowed with the 

structure J~(EI, El) = (-E2, El). 

&se 4. B is nondegenerate, i.e. go is semisimple. But 3-dimensional semisimple Lie algebras 

are simple. Hence go has no nontrivial ideals. So there are no LCR-structures on such a go. A 
deeper analysis shows that if all the hi are positive go is isomorphic to su(2); while if one of them 

is negative it is isomorphic to sl(2, R). In both the cases go is a real form (compact or not) for 

sl( 2, C). 

The last case is when go is not unimodular. Which means that cp is a nonvanishing real linear form. 

So its kernel u is an abelian 2-dimensional ideal. 

Summarizing all the case, one obtains that a 3-dimensional real Lie algebra go either is a 

(simple) real form of sl(2, C) either is endowed with (at least) one LCR-structure given on a 

2-dimensional abelian ideal. 

The study of LCR-structures on 2- and 3-dimensional Lie algebras makes easy the classification 

on 5dimensional ones (remark that, if one considers the 4-dimensional case, the only non-solvable 

Lie algebra endowed with an LCR-structure is Iw @ SO, where SO is a real form of sl(2, Q). Such 

a study is quite interesting since it makes use of Levi-Mal’cev decomposition as we have shown 

in Section 4. In the sequel, let dimga = 5. Suppose that go is decomposed as go = ro Gad SO. Let 

us consider the dimension dim ro. 

When dimro = 0, go is semisimple. Since there are no semisimple algebras of dimension 1 

and 2, go may not have nonvanishing ideals. So go is simple and it has no LCR-structures (cf. 

Table 1). 

Let dim r-0 = 1. Then r-0 = Iw is abelian and SO is simple. Any LCR-structure, if it is, is in so. 

But, SO does not contain ideals. So go has no LCR-structures. 

In the case dim ra = 2, r-0 either is abelian or it is the solvable algebra ha. The corresponding 

Levi-subalgebra SO is simple and coincides either with su(2) or with sl(2, R). Even in this case, 
so does not admit LCR-structures. The only one is given by the solvable ideal r. endowed with 

an endomorphi sm of the form JA . 

The cases dim r-0 = 3,4 cannot occur, since SO should be 2- or l-dimensional. The last case 

is dim r() = 5. Then go is solvable and it admits LCR-structures on all its 2- and 4-dimensional 

ideals. 
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